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A Data and Setting Appendix

This appendix provides additional details about our data, preliminary steps taken to esti-
mate risk and extract negotiated prices, and form choice sets for the plan demand analysis.
In addition, we provide details about the Chilean healthcare market and regulatory envi-
ronment to complement those in the main text.

A.1 Data Construction

A.1.1 Enrollment and Claims Data. Our analysis relies on two main administrative
datasets. First, an enrollment dataset including the universe of private plan policyholders,
their plan choices, household composition, and a vector of sociodemographic character-
istics. Second, a claims dataset that collects each claim processed by private insurers,
along with details about the hospital, the services rendered, the prices charged, and plan
reimbursement. We restrict our attention to 2013–2016 throughout the paper. This section
describes how we move from these raw datasets to the data we use in our analysis.

The raw enrollment dataset includes 1,484,897 policyholders and 61,450 different plans
from the five insurers in our sample. Many of these plans were held by a few policyholders,
with a median enrollment of 12. Two reasons explain the large number of plans with low
enrollment. First, guaranteed renewability implies that enrollees may keep their plan
even if not offered in the spot market. In practice, only a minority of plans are ever offered
in the spot market in our data. Our analysis mostly focuses on plans offered on the spot
market, though we account for legacy plans in plan demand estimation, as discussed in
Section 5. Second, insurers offer many nearly identical plans under different codes to limit
their exposure to regulation, as discussed in Section A.2. Motivated by these features
of the setting, we group the 61,450 reported plan codes by their characteristics: insurer,
inpatient and outpatient coverage, main preferential provider, and deciles of the base
premium. This grouping captures the key financial elements of plan design, competition,
and insurance value relevant to the analysis of VI. Previous work on the Chilean market
has adopted similar strategies (Atal, 2019; Dias, 2022). We rely on the claims data to
recover plans’ preferential providers. The data indicate whether a claim originates at a

1



preferential provider, which we use together with information on consumer cost-sharing
to infer coverage levels by tier. In practice, we observe claims for almost all plans in the
enrollment data, minimizing the loss from this procedure.

We impose two additional restrictions on the enrollment data. First, whenever a
policyholder switches plans within a year, we keep the one held for the longest. Second,
we only keep policyholders between 25 and 64 years old. The final sample includes
1,247,125 policyholders and 4,110 plan-years, of which 1,431 are offered in the spot market.

The raw claims dataset includes 18,957,306 inpatient service claims by the insurers
in our sample at hospitals in Santiago. We aggregate individual claims into admission
events identified in the data. For each admission, we observe ICD-10 diagnosis codes. Ten
percent of admissions (eight percent of revenue) lack enough information to classify their
diagnosis. Moreover, whenever an admission features services from multiple providers,
we allocate the admission to the hospital that provides the most services. We separately
identify admissions at the 11 main hospitals in the market, accounting for 74 percent
of events. All remaining admissions occur at other small private hospitals or public
hospitals, which we collect in the outside option in our analysis. We then aggregate prices
and reimbursement across services within an admission. Each admission is linked to the
plan covering the patient and the corresponding policyholder.

We clean the claims data and restrict the sample as follows. First, we drop a small
number of admissions for which policyholders are not recorded in the enrollment data, or
that do not have diagnosis information. Second, we restrict our attention to 16 diagnosis
groups that include infections and parasites, neoplasms, blood diseases, endocrine dis-
eases, nervous system diseases, ocular diseases, ear diseases, circulatory diseases, respi-
ratory diseases, digestive diseases, skin diseases, musculoskeletal diseases, genitourinary
diseases, pregnancy, perinatal treatments, and congenital malformation. Finally, we only
keep admissions by patients below age 65. The final sample includes 773,264 admissions.

A.1.2 Diagnosis Risk. We aggregate diagnosis at the ICD-10 chapter level throughout
the analysis. Using our claims data, we compute each beneficiary’s average yearly risk of
having a medical event within each diagnosis. To do so, we count the average number
of medical events per enrollee-diagnosis-year within age-gender groups. We bin ages
between 5 and 65 in 5-year intervals. We create separate bins for those under two and
those between 2 and 5.
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A.1.3 Negotiated Prices and Resource Intensity Weights. We compute negotiated prices
and resource intensity weights based on observed total payments to providers per diag-
nosis following recent work in the literature (e.g., Gowrisankaran et al. 2015; Cooper et al.
2018). We regress log total hospital payments per medical event on insurer-hospital-year
and gender-diagnosis-age fixed effects:

log pTotal
ehjt = log pm( j)ht + logωκ(i)d(e) + εehjt

where log pm( j)ht are insurer-hospital-year fixed effects capturing the log negotiated prices,
and logωκ(i)d(e) are the log resource intensity weights associated with consumer i’s type
κ(i) and the medical condition d(e) associated with medical event e. We normalize weights
relative to delivery for a woman aged 25–40. Finally, we recenter the estimated negotiated
prices such that the mean predicted total payment equals the observed mean. In estima-
tion, we drop the top 99th and bottom 1st percentiles of spending to reduce the impact of
outliers. The regression R2 is 0.299.

A.1.4 Insurance Plan Choice Sets and Publicly Insured Consumers. To form plan choice
sets, we select the top 70 percent most popular insurance plans sold by each insurer in
each market segment and year. On average, this captures 27 percent of the plans but 95.2
percent of the enrollment. Each household’s choice set includes these popular plans and
their previous year’s plan, regardless of whether it is currently offered in the spot market,
to conform with Chile’s guaranteed renewability regulation.

For each plan, we compute the expected network surplus for each household member.
This involves using estimates of consumer preferences for hospital care and their estimated
risk to integrate potential medical needs and expected utilities. Based on equation (5) in
the main text, we define δH

ihdt| j = uH
ihdt| j − ε

H
ihdt| j and compute each member’s surplus as

WTPi jt =
∑

d∈D rid ln
∑

h∈H δ
H
ihdt| j. Given the number of diagnoses and available options, this

is a lengthy process. To reduce computational costs, we use a random 30 percent sample
of households when estimating plan demand.

We also incorporate data on public insurance enrollees to build a complete picture
of the insurance market. We obtain information on the number of public enrollees by
age group, gender, dependents, and income quartile from the CASEN survey (CASEN,
2015). We use the waves of 2013, 2015, and 2017 and linearly interpolate the share
of public insurance enrollees by group for the gap years. We use the data to create
representative public enrollees and assign them to private market segments. We match
representative consumers to the modal neighborhood among similar private enrollees
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and draw representative characteristics for their dependents. We then compute their
expected utility from each private plan. Sampling weights are introduced in all subsequent
estimations to account for the number of public enrollees represented by each added
representative household.

A.2 Details about Health Insurance in Chile

A.2.1 Public and Private Sector Interaction. The public and private health systems
operate in a notably isolated manner: Private enrollees account for 97 percent of private
hospital revenue and only 3 percent of public hospital revenue (Galetovic and Sanhueza,
2013). Research on sorting across sectors highlights differences in premiums as the key
driver of enrollment decisions (Pardo and Schott, 2012).

During our period of study, private and public insurance enrollment have remained
steady at around 18 and 76 percent, respectively. While we incorporate substitution
between private and public insurance, substitution across the markets is low (Duarte,
2011). The evidence suggests that the public sector is a safety net for private enrollees,
who utilize it primarily when unemployed.

A.2.2 The Regulatory Environment. In May 2005, the government introduced Law
20,015 known as Ley Larga de Isapres, imposing several regulations on the private in-
surance sector. This law limited risk pricing by enforcing risk-rating functions on insurers
and capping annual premium increases. It also prohibited direct VI by banning insurers
from providing healthcare services.

However, Chile’s law code has enabled industry players to find legal ways to risk-price
consumers and vertically integrate with hospitals. To bypass the pricing step-function
rules, insurers often duplicate their plans, selling different versions to different consumers,
thus segmenting the market without significant regulatory constraints. To capture these
strategies, we aggregate plans based on coverage, premium, and preferential providers
rather than identifiers reported by insurers. Similarly, insurers have circumvented the
VI ban by forming holdings that own both insurers and hospitals. This ability to bypass
regulations has been the focus of much political debate over the last decade.

In September 2004, the government enacted Law 19,966, mandating coverage for a
list of medical conditions. Effective June 2005, public and private insurers must provide
adequate treatment and insurance for these conditions, known as AUGE-GES guarantees.
The law ensures access to adequate treatment and requires hospitals to certify their care
quality. It also mandates private plans cover 80 percent and public insurance 100 percent
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for these conditions. However, private enrollees must file forms and request approval
to use these benefits, leading to significantly lower utilization among them (Alvear-Vega
and Acuña, 2022). In our analysis, we consider this regulation as an overall shifter of
the value of public insurance relative to private insurance and as a determinant of the
resource intensity weight multiplier identified in the price regressions.

Regulation also dictates that private plans must offer coverage at least as generous as
the public insurance system. However, the enforcement of this requirement is incomplete,
and some plans fall below the 60 percent effective coverage of the public option. Due to this
imperfect enforcement of regulatory constraints, we model the regulatory environment
in plan design as a function to be estimated rather than imposing strict constraints that
would not align with the data.

A.2.3 Risk Pricing and Selection. The public insurer distinguishes consumers primarily
based on income and household size but does not offer plans that vary based on other
factors. In contrast, private insurers offer a variety of plans targeted to specific population
subgroups, such as women without dependents, men without dependents, and families.
The target group is often made explicit in the plan’s name and is (imperfectly) reported
to the regulator, which we observe in our data. As noted in the previous section, insurers
face regulatory constraints on their ability to charge consumers different premiums for the
same plan and are not allowed to reject a consumer based on gender. Nevertheless, they
effectively select across groups by carving out coverage for gender-specific treatments (i.e.,
pregnancy). Thus, by offering different plans to different age and gender groups, insurers
circumvent the regulatory pricing constraints. We capture this behavior by treating each
gender and age group as a market segment.

The regulation allows private insurers to reject consumers based on pre-existing con-
ditions. We do not incorporate this margin of selection in our analysis as insurers rely on
consumer disclosure of pre-existing conditions, which is not in our data. It is also unclear
whether consumers have incentives to disclose such conditions or to what extent insurers
can monitor them. In recent years, after our sample, one of the largest insurers in the
market conducted a marketing campaign to attract enrollees by drastically limiting their
consideration of pre-existing conditions (La Tercera, 2020). The effects on enrollment,
however, appeared to be negligible, suggesting that selection on pre-existing conditions
might not be a first-order problem in the market.

The vast number and heterogeneity of plans available in the private market suggest
that insurers use plan design for risk selection. We highlight this force in our main
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analysis, quantifying the degree to which selection on networks contributes to overall
adverse selection in the market. It also plays an implicit role in determining the plan
design equilibrium in counterfactuals.

Finally, it is worth noting that this market has only a minimal risk adjustment mecha-
nism. Insurers create a shared fund, pooling expenses related to AUGE-GES conditions
and redistributing flows based on spending. The pool is managed and funded exclusively
by private insurers. However, as noted in the previous section, AUGE-GES conditions
represent a small share of inpatient care spending, making this risk-adjustment pool irrel-
evant to our analysis. Nevertheless, AUGE-GES represents a relevant source of spending
in outpatient care, which is why we model the non-inpatient care cost of plans (which we
call administrative cost) as plan-specific rather than varying across consumers.

A.2.4 Coverage and Networks. Hospitals in Chile are paid on a fee-for-service basis,
with charges submitted to insurers who then split the bill with the patient according to
the plan’s cost-sharing terms. These structures include a deductible, a coinsurance rate,
and a coverage cap. Deductibles, as usual, require consumers to pay the full bill until
the deductible is met. However, in Chile, deductibles are relatively small compared to
inpatient prices and thus play a minor role in our analysis. Coverage caps, which limit
how much insurers will pay for care in a year, are the counterpart to the maximum out-
of-pocket structure in the U.S., which is not present in the Chilean setting. Coverage caps,
however, are quite high, and the government provides emergency catastrophic insurance
that can often cover the remainder of the bill. Therefore, coinsurance is the main factor
determining cost sharing, which we model and report in our analysis.

By regulation, plan networks come in one of three forms. First, there are unrestricted
network plans, which provide the same coverage for all hospitals, similar to PPO plans
in the U.S. Second, there are preferential provider plans, which offer two-tiered networks
with differentiated coverage across different sets of private hospitals, akin to HMO plans
in the U.S. Third, there are restricted provider networks, which only cover care at specific
providers. Our analysis centers on the first two types of networks as the restricted network
plans are very rare, representing less than eight percent of all plan codes and less than
four percent of enrollment. It is worth noting that the preferential and non-preferential
coverages we use in our analysis summarize plan benefits. In practice, two plans might
have the same preferential coverage, but one might fully cover medical imaging and only
partially surgeon fees, while the other might cover imaging only partially but fully cover
surgeon fees. Importantly, however, coverage across treatment is uniform within each
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coverage tier. In our analysis, we use the average effective coverage of each plan, which
closely matches what consumers observe when purchasing plans. This simplification im-
plies that we cannot speak to the extent to which risk selection is conducted by differential
coverage across medical treatments.

Hospitals cannot deny care to insured patients or emergency care regardless of insur-
ance. In effect, all consumers can access all hospitals, though they may receive limited
coverage from their plan. Overall, private insurers offer higher coverage in private hos-
pitals, which are generally perceived as being of higher quality than public hospitals in
terms of waiting time, medical resources, and medical outcomes.

A.3 Additional Descriptive Statistics

A.3.1 Insurance Market. Table A.2-A summarizes the variation in paid premiums and
market shares across insurers. We document substantial variation in premiums across in-
surers, with the difference between the highest and the lowest insurer average premiums
being 36 percent of the average premium in the market. Furthermore, we observe signifi-
cant variation in premiums within an insurer, likely driven by a combination of preference
heterogeneity leading to compositional differences and the corresponding risk-rating and
cost differences.

A.3.2 Hospital Market. Table A.2-B documents substantial price and market share vari-
ation across hospitals. The industry is moderately concentrated: no hospital has a market
share higher than 13 percent, five hospitals have market shares between 8 and 13 percent,
while the rest have market shares below 5 percent. The overall HHI is 1,387. The outside
option—smaller private hospitals and all public ones—has a market share of 26 percent.
Dispersion in admission prices across hospitals is substantial. For example, hospitals h1

and h6 charge average prices more than double those charged by h4 and h11. Differences
in location, infrastructure, and real and perceived quality explain this price dispersion.

A.3.3 Plan Tiering. Table A.3-A describes the structure of plan preferential tiers by doc-
umenting the share of plans that have each hospital in its preferential tier. In most cases,
VI insurers are more likely to place their integrated hospitals in the preferential tier of
their plans relative to rival hospitals. For instance, ma places its integrated hospitals in the
preferential tier of between 37 and 69 percent of its plans, and mb does so between 49 and
96 percent. In contrast, averaging across insurer-hospital combinations shows hospitals
are preferential in only 20 percent of plans. Notably, regardless of vertical linkages, most
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hospitals feature in the preferential tier of plans offered by all insurers.

A.3.4 Admission Flows. Table A.3-B displays the breakdown of hospital admissions
per insurer and shows that this pattern holds when looking at individual firms. For
each integrated hospital, its integrated insurer is the dominant source of admissions,
accounting for between 43 and 71 percent. Nevertheless, all integrated hospitals receive
a substantial share of patients from integrated and non-integrated rival insurers, and all
non-integrated hospitals receive patients from integrated insurers.

A.3.5 Comparison Between VI and non-VI patients. One explanation for outcome dif-
ferences across admissions covered by insurers that are VI and non-VI with a hospital is
that patients may differ in observables. To study this possibility, we estimate different
versions of equation (2) in the main text, using patient observables as the dependent vari-
able. Finding differences in observables depending on VI would suggest that the patient
groups we are comparing are not balanced. Table A.4 shows the results.

The unconditional comparison in column (1) shows that patients from VI insurers at
their integrated hospital are almost three years older, 6 percentage points less likely to
be female, equally likely to be employed, and have 16 percent lower income than other
patients. However, once we control for the set of fixed effects in equation (2), those
differences get much closer to zero and become less statistically significant. Moreover,
once we include an insurer-hospital fixed effect, VI and non-VI insurer patients only
differ in age. The former are around one year younger on average and are otherwise
balanced. This suggests that our comparison is based on groups of patients with similar
characteristics. Regardless, we control for these observables in our analysis in Section 3.1

A.4 Additional Evidence on VI and Admission Outcomes

We complement the analysis of Section 3 by exploring whether VI affects the provision
of services for which physicians enjoy some discretion. We focus on C-sections and
ultrasounds during pregnancy, hemogram tests in digestive diagnoses, and chest X-rays
and cross-section imaging in respiratory diagnoses. C-sections provide a particularly
convenient setting for this test as, upon delivery, a physician must either implement a C-
section or proceed with natural birth—there is no extensive margin decision. Therefore,

1Note that the regression R2 increases substantially once location, hospital, plan, and diagnosis controls
are included in column (2). This suggests observables explain patient sorting across hospitals, which sug-
gests accounting for observable heterogeneity along these dimensions in demand. Our demand estimates
in Section 5 show substantial observable heterogeneity in preferences over plans and hospitals.
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we know the exact alternatives for physicians in these cases, which is not as evident for the
other services we study. Table A.6-A displays the results, which provide mixed evidence
on the association between VI and the provision of these services. On the one hand,
we find that admissions from VI insurers tend to provide fewer C-sections, consistent
with evidence from the U.S. (Cutler et al., 2000; Johnson and Rehavi, 2016). On the other
hand, we find the opposite effect on imaging and no significant effect on ultrasounds,
hemograms, and chest X-rays. Moreover, once we focus on hospital-insurer variation
only by including hospital-insurer fixed effects, the coefficients become less statistically
significant, as shown by Table A.6-B. Taken together, these results do not suggest a strong
relationship between VI and hospital provision of services. Hence, we do not model these
dimensions of hospital behavior explicitly. However, in our counterfactual analysis in
Section 6, we consider the role of cost efficiencies associated with VI.

B Model Appendix

This appendix presents additional details about how we formulate and implement our
model. It also includes the proofs for the statements made in the main text. Appendix C
provides details about model estimation and simulation.

B.1 Discussion of Model Assumptions

B.1.1 Connection with the Regulatory Environment. This section outlines the connec-
tion between our model and the setting. The most fundamental issue distorting regulatory
control in the market is insurers’ ability to duplicate plans and selectively offer them to
consumers. For example, the law requires insurers to set a base premium for each plan
and establish up to two price schedules determining how each plan’s premium changes
with gender and age. The intent is to control age and gender discrimination by tying
insurers’ hands to the same schedule across plans. Nevertheless, because insurers can
duplicate a plan and set base premiums freely, they can simply sell the same plan under
different codes and thus different prices across gender and age groups without meaning-
ful constraints. In fact, many of the plans in our sample are branded with gender names
and family labels. Thus, rather than follow the regulatory model for pricing, we adapted
it to what insurers use. We examined insurers’ websites and marketing materials and
approximated their age, gender, and family segments.

Our model also simplifies other regulatory margins. First, regulation caps the extent to
which insurers can increase premiums every year. The regulation’s enforcement, however,
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requires enrollees to submit formal complaints during a specific time window.2 Either
because of difficulties in submitting the complaints or due to lax enforcement, insurers in
our study period do not appear to be constrained by these caps.3 In effect, in more recent
years, enrollees resorted to suing insurers for violating these limits.

Second, guaranteed renewability regulation stipulates plans have an indefinite dura-
tion. The law dictates that insurers must outline conditions under which they can change
coverage and access and must notify consumers within 60 days of changes. Conversely,
enrollees must notify insurers 30 days before exiting an insurance contract. This guaran-
teed renewability, in principle, would allow enrollees to retain their plans indefinitely. In
practice, however, insurers can increase premiums for enrollees they wish to displace. In
our model, we accommodate guaranteed renewability in two simplified ways. When esti-
mating demand, we allow policyholders to enroll in their previous year’s plan regardless
of whether it was offered in the spot market. We exclude this behavior when analyzing the
equilibrium effects of VI using our model, treating all policyholders as new enrollees. In
addition, we incorporate legal penalties for disagreements between insurers and hospitals
to capture violations of plan coverage guaranteed renewability.

Third, we also simplify the extent to which insurers may reject enrollees based on risk.
In practice, insurers ask enrollees to report preexisting medical conditions and can reject
applicants or deny coverage on existing conditions. However, the impact of this selection
is unclear, as we discuss in Section A.2. Thus, we choose not to model the margin of
insurance rejection in our model.

Finally, as we note in Section A.2, there is a limited risk pool that compensates insurers
for spending differences on a select list of conditions. Our analysis does not model
risk adjustment as few of these conditions are treated in an inpatient setting. These
conditions, however, are an important source of outpatient spending, which justifies
modeling the non-inpatient care cost (or administrative cost) as plan-specific and invariant
across individuals.

B.1.2 Value of Insurance. We impose two assumptions about the value of insurance.
First, we only model allocative moral hazard spending. Consumers do not forgo care in
response to higher out-of-pocket prices but rather seek care at the outside option. A cheap
public option makes it the relevant alternative for patients. Second, we model the value of
risk protection only through consumer network surplus. We do not model risk aversion

2For details, see Chile Atiende (2024).
3This limited enforcement is well documented in the press from the time (CIPER, 2013).
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explicitly, as the regulatory pressure to provide generous plans limits the extent to which
coverage changes in counterfactuals. Instead, regulation leads firms to use coverage to
steer demand and affect negotiated prices. Therefore, we expect the first-order impacts
of VI to be on prices, premiums, and choices rather than risk protection. Our model
builds on previous work on price competition and healthcare consolidation, allowing us
to benchmark our analysis against known results. Our model describes the effects of VI
on a regulated insurance market, similar to managed competition (Tebaldi, 2024).

B.1.3 Exogenous Hospital Costs and Quality. As discussed in Section 3, the data do not
suggest meaningful differences in costs, treatment, or quality at VI hospitals for patients
covered by their integrated insurers. Additionally, VI hospitals in our setting are neither
the highest nor the lowest quality providers. Therefore, we chose not to endogenize cost
or quality. We discuss the impact of alternative assumptions regarding cost efficiencies
and quality improvements in Section 6.4 of the main text.

B.2 The Pricing Subgame

We formulate the pricing subgame through two nested fixed-point conditions to im-
prove computational efficiency and respect our equilibrium refinement. The outer layer
corresponds to the stacked conditions associated with the optimality of negotiated and
VI-optimal prices, while the inner loop operationalizes the premium setting condition. In
what follows, we ignore time indices when possible to reduce the notational burden.

B.2.1 Premiums. We use the approach of Morrow and Skerlos (2011) to form a fixed
point formulation of the optimality condition associated in equation (10). This results in:

Φ = Λ(Φ)−1[Γ(Φ)Φ + C(Φ)]

where Φ is the stacked vector of all plan premiums, Λ is a diagonal matrix with j-th
element equaling

∑
i∈I |Fi|

2αM
i DM

ij (Φ), and Γ is a sparse matrix with ( j, j′)-th entry equal to∑
i∈I |Fi|

2αM
i DM

ij (Φ)DM
ij′(Φ) if plan j and j′ belong to the same insurer and zero otherwise.

Finally, C(·) is a vector capturing all cost and VI elements:

C(Φ)[ j′] =
∑
i∈I

|F(i)|DM
ij′(Φ)

αM
i (eci j′ + η j −

∑
j∈Jm

DM
ij (Φ)(eci j + η j)) − 1 − αM

i

(
πH|m( j′)

i j′ −

∑
j∈J

DM
ij (Φ)πH|m( j′)

i j

)
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where eci j is consumer i’s expected inpatient cost as described in equation (7) and πH|m( j′)
i j

corresponds to insurer m( j′)’s weighted profits at integrated hospitals from claims paid by
plan j if individual i enrolls in it: πH|m( j′)

i j =
∑

h∈H θm( j′)h
∑

i′∈Fi

∑
d∈D ri′dDH

i′hd| jωi′d(pm( j)h − khm( j)).

As noted by Morrow and Skerlos (2011), while there are no theoretical guarantees that
this formulation results in a contraction mapping, it appears to be so in practice. We
obtain consistent, rapid convergence to the same stable set of premiums, regardless of the
starting point, initial price, and coverage values.

B.2.2 Prices. For any hospital system s ⊂ H, we follow the logic of Gowrisankaran
et al. (2015) to express the optimality conditions associated with negotiated prices and
VI-optimal prices (if any) as:

ps = ks − (∇psD
Ht
s · diag(θs) + diag(χs) ·Λs)−1(diag(θs) · D̃s + ∇psπ

M
m(s) + diag(χs) · ΓVI

s )

where ps and ks are the system’s vector of prices and hospital costs across the system’s
hospitals and all insurers, DH

s is the vector of total resource-weighted expected hospital
demand from each insurer, diag(·) is the diagonalization operator, and χs is an indicator
vector that equals one when the hospital and insurer in each row are not VI. Finally, Λ

and Γ are defined as:

Λs[i, j] =

 τh

1 − τh

∂πM
m

∂ph,m
+

∑
h′∈H θh′m

∂πH
h′

∂ph,m

∆m,sVM
m

 [i] × θh′[ j]∆m[i],sD̃m′h′[ j]H

ΓVI
s [i] = (

τh

1 − τh

∂πM
m

∂phm
+

∑
h′∈H θh′m

∂πH
h′

∂ph,m

∆m,sVM
m

∆πM
m(s))[i]

∆m,sVM
m [i] = ∆m[i],sπ

M
m[i] +

∑
h′∈H

θh′m[i]∆m[i],sπ
H
h′ + lm[i]h[i]∆m[i]sWTPm[i]s

where ∆msWTPms is the total expected loss in network surplus from removing hospital
system s’s members from all of m’s networks. When computing this value, we assume
the courts would compute consumers’ expected network surplus using the average prices
negotiated by rival insurers with the removed hospitals. We also assume they will use
the realized insurance demand (under disagreement) to compute total losses. These
assumptions mostly affect the identified distribution of multiplier L. Our estimates remain
largely unchanged if we assume the courts use the full-agreement insurance demand or
previous hospital prices as the basis for computing network surplus losses.

Unlike the premium fixed point formulation, we find that the expression above is
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a contraction mapping only locally around the equilibrium. To address this, we use
a globally convergent Anderson Acceleration routine (Zhang et al., 2020). This results
in an efficient pricing subgame equilibrium solver, with the outer loop solving the more
challenging price fixed-point problem and the inner loop providing equilibrium premiums
conditional on the current guess of hospital prices.

B.3 Solving the Plan Design Problem

We begin by proving Proposition 1 from the main text, which is the central result for
solving the plan design problem.

Proof of Proposition 1. We begin by restating the original problem for completeness. Denote
Jm the set of plans to be optimized and the firm’s objective V(C) = π̃m(φ∗(C),p∗(C),C) −∑

j∈Jm
M j(Kr

m(C) + Ko
m(C)), where C ∈ [0, 1]|Jm|×|H| is the matrix of coverages from each plan

at each hospital. Denote the set of tiered coverages as Cm = {C ∈ [0, 1]|Jm|×|H||C( j,·) ∈ C}

where C( j,·) is the row associated with plan j and C is defined as in equation (12). Thus, the
original combinatorial optimization problem established in equation (12) can be expressed
as P∗ : maxC∈Cm V(C).

Let P0 denote the following continuous-control non-convex optimization problem:

max
c,c̄∈[0,1]|Jm |,W∈[0,1]|Jm |×|H|

V(diag(c)(1 −W) + diag(c̄)W) (1)

s.t W jh(1 −W jh) = 0 ∀ j ∈ Jm, h ∈ H (2)

Denote C0
m = {C ∈ [0, 1]|Jm|×|H|

∣∣∣∃c, c̄ ∈ [0, 1]|Jm|,W ∈ [0, 1]|Jm|×|H|, s.t. C = diag(c)(1 −W) +

diag(c̄)W}. Note thatCm ⊂ C
0
m as any element ofCm corresponds to an element ofC0

m where
the weight matrix W is an extreme point of its domain. Moreover, note that any element
of Cm has a representation (c, c̄,W) that satisfies the tiering constraint W jh(1−W jh) = 0 and
any element of C0

m that satisfies the constraint is an element of Cm.

As V(·) is continuous and the setC0
m is compact, the Weierstrass extreme value theorem

guarantees a solution to P0 exists. Therefore, arg maxP∗ = arg maxP0 necessarily and
neither are empty. By contradiction, suppose that∃C̃ ∈ arg maxP∗ not in arg maxP0. Then
there exists Ĉ ∈ arg maxP∗ such that V(Ĉ) > V(C̃) and moreover Ĉ satisfies the tiering
constraint, hence it is an element of Cm. Analogously, if there exists C0

∈ arg maxP not
in arg maxP∗, then there exists C′ ∈ Cm such that V(C′) > V(C0) that satisfies the tiering
constraint. Therefore, problem P∗ and P0 are equivalent.
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Let λ > 0 and G(·) be a positive, continuous, strictly monotonic function. Without loss,
normalize G(0) = 0. Define P1(λ) the original statement of the proposition:

max
c,c̄∈[0,1]|Jm |,W∈[0,1]|Jm |×|H|

V(diag(c)(1 −W) + diag(c̄)W) − λ
∑
j∈Jm

∑
h∈H

G(W jh(1 −W jh)) (3)

Again, this is a continuous optimization problem over a compact domain. Hence, a
solution exists. Moreover, by Berge’s maximum theorem, arg maxP1(λ) is continuous in
λ. Note that any solution to P0 attains the minimum tiering penalty

∑
j∈Jm

∑
h∈H G(W jh(1 −

W jh)) = 0 and that for any convergent sequence of solution to P1, C1(λ), the tiering
penalty at C1(λ) must be weakly decreasing in λ. Therefore, by the upper hemicontinuity
of the solution to P1(λ) established by the maximum theorem, limλ→∞ arg maxP1(λ) =

arg maxP0 = arg maxP∗. �

The proof above contains a simple idea. It states that whether insurers face a strict
requirement to submit tiered networks or a penalty for submitting plans with untiered
networks is equivalent. The proposition establishes a sequence of design problems under
increasing penalties, which allows us to trade off exploration versus optimality when
solving the problem. The rate at which these problems converge as the penalty λ increases
is inherently tied to the value firms have from offering intermediate tiers of coverage. In
our setting, the value of doing so is low because insurers use tiers to steer consumers to
specific hospitals. To do so effectively, they must introduce a large wedge between the
out-of-pocket price at the hospitals they want consumers to visit and those they do not.
Designing plans with coverages between the preferential and base tiers counteracts the
efforts to steer consumers. In Appendix C, we discuss how we implement the convergent
sequence of design problems and find intersections of insurers’ best responses.

B.4 Identification of Price and Premium Parameters

This section formalizes the identification of the price- and premium-setting parameters,
discussed in Section 5. Before proceeding with the statements, we introduce some ad-
ditional notation. Denote the total weighted demand to hospital h from insurer m as
DH

h|m =
∑

j∈Jm

∑
i∈I DM

ij

∑
i′∈Fi

∑
d∈D ri′dωi′dDH

i′hd| j. Denote the vector of total weighted demand
from each insurer to hospital h as DH

h . Denote the total demand for plan j, and DM
m the

vector of demand for each plan of insurer m as DM
j =

∑
i DM

ij . Denote the difference in
demand from hospital h from insurer m′ under full agreement and under disagreement
between the pair (m, h) as ∆mhDH

h|m′ . Denote the matrix of demand for hospital h from each
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insurer (columns) under every potential disagreement (rows) as ∆h|MD
H
h . Denote the

vector of premiums of insurer m as φm, the vector of hospital prices for h from all insurers
by ph, and the vector of prices between insurer m and its integrated hospitals (if any) as
pVI

m . Given this notation, we impose the following regularity assumptions on the problem:

Assumption 1.

(a) (substitution): For every h,m,∇φmD
M
m and∇pmD

H
h are negative definite, ∆h|MD

H
h is positive

definite.

(b) (gains from trade): For any pair (h,m), ∆mhπM
m > 0, ∂π

M
m

∂phm
≤ 0, ∆mhπH

h > 0, and
∂πH

h
∂pmh
≥ 0.

(c) (rank): For any VI insurer m, the gradient matrix ∇[φm,pVI
m ][DM

m ,π
M
m ] is column rank.

Assumption 1(a) establishes basic requirements on substitution patterns, which are
common in demand theory (Kihlstrom et al., 1976). Inherently, they require strong substi-
tution away from products as prices and premiums increase and strictly positive spillovers
to competing products. Note that the negative definiteness of plan demand is required
separately by market segment and, hence, does not require plans in other market segments
to be affected by competition for a separate set of consumers. Assumption 1(b) requires
negotiation between hospitals and insurers to be individually rational for each party and
to feature tension in optimal payments. Negotiations failing individual rationality should
not occur, and those without tension do not require bargaining to be resolved. Finally,
Assumption 1(c) establishes basic rank requirements analogous to those found in the anal-
ysis of linear regressions. It is essentially a statement about the data featuring sufficient
variation for identification.

In addition to these assumptions, we introduce two additional assumptions required
only for our specialization of the bargaining model. To do so, we introduce the additional
structure of our model and disagreement penalties. The following notation describes the
key identified elements of demand and hospital profits that are at stake during negotiation:

vH
hm =

∑
m′ ∆mhDH

h|m′phm′ −

∑
m′′ ∆mhDH

h|m′′∑
m′′ DH

h|m′′
ko

h∑
m′ ∂mhDH

h|m′phm′ −

∑
m′′ ∂mhDH

h|m′′∑
m′′ DH

h|m′′
ko

h

D∂
hmm′ = DH

h|m′

∑
m′′
∂mhDH

h|m′′ − ∂mhDH
h|m′

∑
m′′

DH
h|m′′

D∆
hmm′ = DH

h|m′

∑
m′′

∆mhDH
h|m′′ − ∆mhDH

h|m′

∑
m′′

DH
h|m′′
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where ko
h is the observed average hospital cost and ∂mh is shorthand for the partial deriva-

tive with respect to pmh.

Assumption 2.

(a) (rank): Let X be a matrix with row elements [vH
hm,D

∂
hm1, . . . ,D

∂
hmM,D

∆
hm1, . . . ,D

∆
hmM], for

every pair (h,m). X is column rank.

(b) (independence): The disagreement penalty multiplier lhm is drawn independently across pairs
(h,m) from a distribution L with finite variance. Moreover, lhm is independent of hospital
and insurance demand and costs.

As before, Assumption 2(a) is essentially a requirement of sufficient variation. As-
sumption 2(b) requires strong independence of the regulatory penalty from other relevant
random factors. This assumption is only used to establish a regression residual in Lemma
3, and hence can be weakened to incorporate heteroskedasticity or endogeneity using
standard results from the literature on non-linear regressions (Amemiya, 1983). We can
now state our key results, which we prove below.

Proposition 1. Let Assumptions 1 and 2 hold, and hospital costs be decomposed as khmt = kH
ht + k̃H

mt,
then (θmht, khmt, τh, η jt) are point identified and L is non-parametrically identified.

The proof proceeds in three steps. First, we show that elements specific to VI firms are
point-identified up to VI hospital costs. Therefore, we can focus attention on identifying
these objects in a setting without VI, as the added complexity of VI firms is resolved
through the optimality condition of VI prices and premiums. Second, we show that if there
were no disagreement penalties for insurers, then a more general version of our model is
exactly identified from the optimality conditions associated with prices and our additional
data on total hospital costs. Third, we show that these general identification results imply
that our more constrained model is also identified. Finally, the key proposition follows
as a corollary of these three lemmas. Our identification arguments below are fully cross-
sectional. Hence, we omit the time subscript from all equations.

We begin by resolving the identification of insurer administrative costs η jt and VI firms’
objective weights θhmt. The following lemma is a direct consequence of the monotonicity
of premiums and prices in these parameters.

Lemma 1. Let Assumption 1 hold. For any non-VI insurer, η jt is point-identified from the
premium setting condition. For any VI insurer, given VI-hospital costs khmt, administrative costs
η jt, and VI weights θhmt are point-identified.
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Proof. Denote a plan’s profit from insurance net of administrative cost as:

v j = DM
ij (|Fi|φ j −

∑
i′∈Fi

∑
d∈D

ri′d

∑
h∈H

DH
i′hd| j(pm, c j)c jhωi′dpmh)

And hence, we can write a firm’s objective as:

πVI
m =

∑
j∈Jm

(v j −DM
j η j) +

∑
h∈H

πH
h (kh)θhm

We can use this expression to evaluate the insurer’s premium optimality condition and
VI firm’s price optimality condition. Stacking these conditions, we get

∇
t
φm
vm − ∇

t
φm
DM

m ηm + ∇t
φm
πH

m(km)θm = 0 (4)

∇
t
pVI

m
vm − ∇

t
pVI

m
DM

m ηm + ∇t
pVI

m
πH

m(km)θm = 0 (5)

where bold letters denote vectors, πH
m denotes the vector of hospital profits for hospitals

integrated with insurer m, and∇pVI
m

is the gradient with respect to prices between insurer m
and its integrated hospitals. Equation (4) establishes a linear system of equations in θm and
ηm. For non-VI insurers, equation (4) resolves the identification of ηm, as ∇t

φm
DM

m is square
and invertible by Assumption 1(a). For VI firms, equation (5) provides an additional linear
system of equations with as many equations as hospitals are integrated with insurer m.
Moreover, by Assumption 1(c), the system has column rank. As πH

h is linear in costs, this
establishes that, conditional on hospital costs, there is a unique solution to θm,ηm. �

The previous lemma states that the VI-specific parameters are point-identified condi-
tional on identifying hospital costs. Hence, we can focus on identifying costs and safely
ignore any complexities imposed by VI in this problem. The following lemma estab-
lishes that, given our additional data on total hospital costs, the standard Nash-in-Nash
bargaining model is exactly identified.

Lemma 2. Let Assumption 1 hold. If there are no disagreement penalties (l = 0) and no-VI firms,
then (τh, khm) are identified for every h,m.

Proof. Denote λh = (1− τh)/τh and note that Nash bargaining optimality conditions imply
that for any pair h,m, we have:

|∂πM
m /∂phm|

∆mhπM
m

= λh
∂πH

h /∂phm

∆mhπH
h
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where, by Lemma 1, the left-hand side is identified, and hence we can treat it as a known
component α̂hm =

|∂πM
m /∂phm|

∆mhπ
M
m

. Therefore, we can rewrite the equation above as:

α̂hm = λh

∑
m′∈M ∂DH

h|m′/∂phm(phm′ − khm′) + DH
h|m∑

m∈M ∆mhDH
h|m′(phm′ − khm′)

α̂hm

∑
m′∈M

∆mhDH
h|m′(phm′ − khm′) = λh(

∑
m′∈M

∂DH
h|m′/∂phm(phm′ − khm′) + DH

h|m)

−λhDH
h|m +

∑
m′∈M

(α̂hm∆mhDH
h|m′ − λh∂DH

h|m′/∂phm)phm′ =
∑

m′∈M

(α̂hm∆mhDH
h|m′ − λh∂DH

h|m′/∂phm)khm′

which we stack over all negotiations of hospital h to obtain:

−λhD
H
h + (α̂h∆h|MDH

h − λh∇
t
ph

DH
h )ph = (α̂h∆h|MDH

h − λh∇
t
ph

DH
h )kh

−(λhα̂h∆h|MDH
h − ∇

t
ph

DH
h )−1DH

h + ph = kh (6)

where invertibility in the last row follows from Assumption 1(a). In this expression, DH
h

denotes the vector of total weighted demand for hospital h from each insurer, αh is a
diagonal matrix with elements αhm, and ∆h|MDH

h corresponds to the matrix of differences
in hospital demand from each insurer (columns) under each negotiation (rows). Note that
Gowrisankaran et al. (2015) derived an equivalent condition, albeit for a different purpose.

Our data includes observations of total hospital costs expressed as ko
h = DHt

h kh. We can
rewrite equation (6) as:

DHt
h (λhα̂h∆h|MDH

h − ∇
t
ph

DH
h )−1DH

h = DHt
h ph − ko

h (7)

By Assumption 1(b), α̂h is a diagonal matrix of positive entries, and by Assumption
1(a) ∆h|MDH

h is positive definite. Hence, the first term on the left is monotonic, decreasing
in λh. Therefore, equation (7) has a unique solution for λh. Substituting this solution in
equation (6) establishes the uniqueness of kh. �

Lemma 2 is the central identification lemma as it establishes that the Nash-in-Nash
pricing condition, augmented with partial data on hospital costs as in Ho and Lee (2017),
delivers identification of the model. Moreover, the identification relies exclusively on
cross-sectional variation. Hence, some of the structural assumptions made in our model
can be relaxed to leverage time-series information. For example, the argument implies we
could identify a time-varying hospital-specific bargaining parameter, τht. The following
corollary follows directly from combining the two previous lemmas.
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Corollary 1. If there are no disagreement penalties (l = 0), then (τh, khm, θhm, η j) are point-
identified.

Finally, we can establish the identification of our specialized model without VI.

Lemma 3. Let Assumptions 1 and 2 hold, and assume there are no VI firms, and khm = kh + k̃m.
Then (τh, kh, k̃m) are point-identified and L is non-parametrically identified.

Proof. First, note that the observation of ko
h implies kh =

ko
h−

∑
m DH

hmk̃m∑
m DM

hm
, hence we only need to

identify L, k̃m, and τh from the bargaining optimality condition, which is now given by:

|∂πM
m /∂phm|

∆mhπM
m + lhm∆mhWTPmh

=
1 − τh

τh

∂πH
h /∂phm

∆mhπH
h

and can be rewritten as:

∆mhπM
m

∆mhWTPmh
= −l0 +

τh

1 − τh

∆mhπH
h

∂πH
h /∂phm

|∂πM
m /∂phm|

∆mhWTPmh
− l̃hm (8)

where l0 = E[l] and l̃hm is the residual which, by Assumption 2(b), satisfies E
[
l̃| |∂π

M
m /∂phm|

∆mhWTPmh

]
=

0.Therefore, equation (8) is a non-linear regression equation. With some manipulation,
it is easy to see that this non-linear regression equation is of second order and has an
equivalent regression:

ymh = α
(
1 +

∑
m′∈M

k̃m′D∂
hmm′

)
+ βhxhm

(
vH

hm +
∑

m′∈M

k̃m′D∆
hmm′

)
− ymh

(∑
m′

k̃m′D∂
hmm′

)
+ ηhm (9)

where yhm =
∆mhπ

M
m

∆mhWTPmh
, xhm =

|∂πM
m /∂phm|

∆mhWTPmh
, α = −l0, βh = τh

1−τh
. To see that α, βh, and k̃m are

identified from the above regression, it is sufficient to look at how the variation in the
covariates (D∆, v,D∂, x) translates into variation in the dependent (y). In particular, it

is easy to verify that
∂ymh/∂D∆

hmm′

∂ymh/∂vH
hm

= k̃m′ and thus ∂ymh/∂vH
mh identifies β and ∂ymh/∂D∂

hmm′

identifies α. L is identified from the distribution of the implied residual l̃hm. �

Finally, Proposition 1 follows as a direct consequence of Lemma 1 applied to Lemma
3. The results derived in this section imply that the identification of premium-setting and
pricing parameters in our model can be cast into the framework of identification in linear
and quadratic regressions. Lemma 2 shows that identifiability is not determined by the
simplifying assumptions we imposed on the model, namely the iid disagreement penalty
and the block structure on hospital costs. Rather, the identification of the Nash-in-Nash
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bargaining parameters follows from the optimality of the bargaining solution augmented
with observation of hospital total costs.

C Methodological Appendix

This appendix provides additional details about the estimation and counterfactual simu-
lation methodology.

C.1 Demand Instruments

To estimate consumer preferences for hospitals and insurance plans, we must address the
potential endogeneity of firms’ choices to unobserved preferences. As the main text notes,
we rely on two sets of instruments for this purpose, which we describe next.

C.1.1 Hospital Demand Instruments. The main endogeneity problem in identifying
preferences over hospitals is that prices might be negotiated with knowledge of unob-
served preferences for care. We instrument prices using supplementary data on claims
paid by closed insurers—large employers who have formed insurance companies exclu-
sively to cover their employees and who do not sell insurance on the open private market
we study. For each medical event of a closed-insurer enrollee, we regress the total bill
amount (i.e., the total amount paid to the hospital) on diagnosis-year, hospital fixed ef-
fects, age, and gender fixed effects. We use the estimated parameters to predict total
closed-insurer payments for each option in our hospital demand panel. We multiply the
predicted price by the enrollee’s coinsurance rate to account for differential coverage. We
use this predicted out-of-pocket price as our instrument.

Table A.7-A shows the first stage of the instrument on private enrollees’ out-of-pocket
hospital prices within the hospital demand panel. To match the estimating equation,
the regression controls for distance and year-diagnosis-insurer-hospital fixed effects. As
shown, the instrument has a strong and significant positive relationship with the endoge-
nous price variable. While Table 2 in the main text shows the effect with the instruments
included, Table A.7-B shows the impact of ignoring them. As usual, failing to instrument
for endogenous prices results in a lower predicted price elasticity.

C.1.2 Plan Demand Instruments. The main endogenous variable in our plan demand
estimation corresponds to plan premiums. As explained in the main text, we instrument
this variable using the public hospital system’s list prices to compute each household’s
expected spending. Adjusting spending by each plan’s coverage, we construct a predicted
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cost metric for each insurer, which we call the actuarially fair premium. We instrument
each plan’s premium with the average of its rivals’ actuarially fair premiums. Table A.7-A
shows the first stage regression of the instrument, while Table A.7-B shows the effect of
ignoring the instruments on estimated preferences. As with hospital demand, ignoring
the endogeneity of premiums results in a lower predicted elasticity.

C.2 Price and Premium Setting Parameter Estimator

We estimate our model’s price and premium setting parameters using an iterative two-
step procedure. The outer loop takes a guess of hospital costs and applies a linear
inversion to recover hospital plan administrative cost (η jt) and VI weights (θhmt) from
the optimality conditions associated with plan premiums and VI prices. Conditional on
plan administrative cost and VI weights, the inner loop solves a constrained maximum
likelihood problem to recover hospital costs, bargaining weights, and the distribution of
the disagreement penalty multiplier. The estimator can be described as follows:

max
τ∈[0,1]|H|,kH ,k̃H ,µl,σl

∑
h,m,t∈B

lnL(p∗hmt|β
λ, µL, σL,βc)

s.t. kH
h + k̃H

mt ≥ 0 ∀h,m, t (C1)

∆mhπ̃ht ≥ 0 ∀h,m, t (C2H)

∆mhπ̃mt + lhmt∆mhWTPmht ≥ 0 ∀h,m, t (C2M)

∂∆mhπ̃ht

∂phmt
≥ 0 ∀h,m, t (C3)

ko
ht =

∑
m′

DH
h|m(kH

h + k̃H
mt) ∀h, t (MATCH)

∇[φm,pVI
m ]π̃mt = 0 ∀ VI-m (INV)

where the likelihood of hospital prices is evaluated over all hospital-insurer price negoti-
ations. The first four constraints match the requirements of our identification results: C1
imposes that hospital costs are positive, C2H and C2M that negotiations are individually
rational, and C3 that hospital gains from trade are increasing in price at the observed
prices. These constraints impose bounds on hospital costs, as neither bargaining param-
eters nor the penalty distribution enter them. The MATCH condition incorporates our
additional hospital cost data, where DH

h|m denotes the demand for hospital h from insurer
m, weighted by resource intensity ωid. Finally, the INV constraint captures the linear in-
version procedure for recovering plan administrative costs and VI weights from VI firms’
optimality conditions.
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Following the Nash bargaining model formulated in Section 4, the likelihood of ob-
serving p∗hmt for the negotiation between hospital h and insurer m in year t is the likelihood
with which observed price satisfy the first-order optimality condition:

L(p∗hmt|β
λ, µL, σL,βc) = P

(
λh

∂π̃mt/∂phmt

∆mhπ̃mt + lmht∆mhWTPmt
+
∂π̃ht/∂phmt

∆mhπ̃ht
= 0

)
= P

(
lhmt = −

λh

∆mhWTPmt

∂π̃mt

∂phmt

∆mhπ̃ht

∂π̃ht/∂phmt
−

∆mhπ̃mt

∆mhWTPmt

)
where λh = τh

1−τh
. The analytic form for this expression is easily derived from the assump-

tion that l is normally distributed.

A relevant advantage of splitting the estimation into two nested loops is that the result-
ing constraints on the maximum likelihood problem are linear in parameters. Moreover,
only cost parameters (kH, k̃H) feature in them, appearing only in hospital profits, which
are linear in costs.4 Hence, all constraints are linear, and the feasible set of cost solutions is
a regular convex set. It is easy to see that because π̃mt is linear in administrative costs (η jt)
and VI weights (θhmt), these are uniquely determined from the optimality condition of VI
prices and premiums, conditional on a guess of hospital costs (see the proof of Propo-
sition 1). Hence, this estimator is simple and efficient when implemented in a two-step
procedure, and the feasible region of parameters is easy to explore. None of the first four
constraints is binding, and the other two can be absorbed within the likelihood objective.
Therefore, the asymptotic properties of the estimator are well described by those of stan-
dard maximum likelihood. Figure A.7 shows the convergence rate of the solution in our
estimation. It shows that within two iterations, we attain a stable solution for supply-side
parameters, which takes only a few minutes to solve.

C.3 Plan Design Cost Estimator

The cost of designing plan coverage is estimated in two steps. First, we estimate the
regulatory cost component, which is a function of the continuous coverage level of each
plan. We specify the cost as Kr

m(c jt) = exp(cK(c jt)) + c jtζ jt
+ c̄ jtζ̄ jt, where cK(·) is a flexible

polynomial of coverage and (ζ̄, ζ) are mean zero iid normal shocks of unknown variance.
We estimate this component of the model by using the optimality condition associated

4In practice, we do not impose the MATCH constraint directly but add it as a large quadratic cost to
the solver. This is to avoid issues with empty feasible sets on single hospitals for some intermediate solver
iterations. On convergence, the solution satisfies the constraint.
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with coverage levels of each plan (c jt, c̄ jt):

∂π̃mt(φ∗(c),p∗(c), c)
∂c jt

−M jt
∂Kr

m(c j)
∂c jt

= 0

∂π̃mt(φ∗(c),p∗(c), c)
∂c̄ jt

−M jt
∂Kr

m(c j)
∂c̄ jt

= 0

Given the pricing subgame, the primary challenge in this estimation procedure is
computing the derivative of equilibrium profits. With the average insurer offering 81 plans
with two tiers each over four years of data, this necessitates calculating 648 derivatives
of the subgame equilibrium for each insurer. This is made feasible by recent advances in
GPU-accelerated linear algebra and automatic differentiation(Bradbury et al., 2018).

Having estimated the continuous regulatory cost, we turn to estimating the fixed cost
of tiering. We define Ṽmt = π̃mt −

∑
j∈Jmt

M jtKr
m(c j), and ∆ jhtṼmt denotes the change in Ṽmt

when the tiering position of hospital h in plan j is inverted. We implement equations
(14) and (15) following the approach of Canay et al. (2023). We form a grid of nearly
two thousand potential tiering costs, ranging from -3 to 3 million dollars per hundred
thousand enrollees. We use the test of Chernozhukov et al. (2019) to admit points into the
identified set. To evaluate the associated confidence interval, we identify the minimum
and maximum points that satisfy the inequality and refine the cost grid to pinpoint the
exact values where the inequality binds. We apply the bootstrap approach described in
Chernozhukov et al. (2019), taking 300 random samples of our data with replacement.

Evaluating the impact of tiering decisions on equilibrium conditions is computationally
intensive. With 11 hospitals to tier, we need to evaluate approximately 17,820 different
subgame equilibria to form the estimator. Again, this is facilitated by optimizing the
subgame equilibrium fixed-point solver and employing GPU acceleration.

C.4 Solving Counterfactual Equilibria

Simulating counterfactual equilibria involves two primary challenges: solving the combi-
natorial plan design problem and identifying a set of equilibrium strategies for all firms.

We tackle the first problem by relying on the result of Proposition 1 and XLA/JAX.
We define a grid of tiering penalties λ ∈ {0, 1, 10, 100} and a penalty function G(x) = x2.
Given that our costs are measured in millions, these choices imply a maximum penalty of
68.75 million per plan for violating the tiering constraint. Fixing rival designs, we solve
each firm’s design problem in parallel, determining the solution c̃∗(λ) along the grid. The
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initial condition at λ = 0 and the first iteration of the solver are always set to the status
quo, with subsequent iterations updating from the previous solution. If at any λ < 100
the single-firm optimum has a tiering violation (

∑
j∈Jmt

∑
h∈H G(w jh(1−w jh))) below 10−4, we

accept it as optimal for the best response iteration.

To illustrate the performance of this approach, we compare it to solving the pro-
blem by brute force using grid search. We select two firms at random and choose a
single plan for each. We consider a grid of potential coverage levels, taking values in
[0.65, 0.7, 0.75, 0.8, 0.85], and evaluate the profitability of every potential tier design while
keeping the design of all other plans in the market fixed. In total, each firm evaluates
20,480 configurations. As the effect of a single plan on equilibrium prices and premiums
is small, we shut down this channel for this exploration, which vastly reduces the compu-
tational cost of grid search. To illustrate its stability, we run our regular convergent solver
from 30 random starting points. Figures A.8a and A.8b show the results. On average, our
algorithm attains between 95 and 101 percent of the maximum value of the grid search.5

For insurer 1, the objective curve is slightly smoother, likely contributing to improved
performance. Our worst solution attains 98.7 percent of the maximum grid value. For
insurer 2, the objective is slightly more jagged, likely contributing to a reduced worst-case
performance of 91 percent.6 Figure A.8c shows the difference in computing times for both
approaches. While grid search is about as fast as our approach for a single plan, it is about
two orders of magnitude slower for two plans and nearly seven for three plans. When
evaluating these results, it is worth remembering that this class of problems is NP-hard;
insurers are likely relying on commercial mixed-integer packages to solve these design
problems, which are not guaranteed to obtain the optimum. As noted by Murray and Ng
(2010), this approach is often as good or better than commercial solvers.

The second challenge involves finding the intersection of firms’ best responses. We
employ a Gauss-Seidel approach: starting with status quo designs, we identify each firm’s
best response to the current state and update the state accordingly. We iterate until the
change in plan coverages is less than 10−5 in the Euclidean norm.

To illustrate the performance of the approach, we return to the two single-product
firms described above. We solve the equilibrium between the two firms by grid search and
through our regularized approach, starting from 30 random points as before. Denoting

5Our algorithm can improve upon the result of the grid because it is not constrained to the same coarse
coverage options.

6The figures also show that the grid optimum is isolated from other designs. This suggests that firms’
best responses might have a unique solution.
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the equilibrium profit of firm j under the brute-force grid search as πB
j , and under the

regularized approach as πR
j , we define the relative fit of our approach as ε j = (πR

j −π
B
j )/πB

j .
We describe equilibrium fit based on ε∗ = (

∑2
j=1 ε

2
j )

1/2. Figure A.8d shows the distribution
of ε j and ε∗ across the different starting points. The relative difference in insurer profits (ε j)
is minuscule, with an absolute value below 0.3 percent for insurer 1 and below 0.1 percent
for insurer 2. The equilibrium fit (ε∗) displays an interquartile range below 0.25 percent.
Most of the mismatch between the approaches is due to improved best responses found
by the regularized approach rather than from meaningful differences in plan design.

Finally, below is an illustration of our full process for one counterfactual equilibrium
exercise, which converged in four iterations of best response intersections:

Outer [ Relaxed ] [ 0 ] Time : 839 .7 seconds

BR : [ 764.778 , 501.524 , 210.011 , 874.270 , 4.082 ]

NI : [ 506.341 , 294.806 , 89.630 , 632.665 , −264.353 ]

P e n a l t i e s : [ 5.329 ∗ 10−14 , 3.908 ∗ 10−14 , 5.684 ∗ 10−14 , 1.279 ∗ 10−13 , 1.778 ∗ 10−8 ]

Delta p r i c e s 10.0

Delta premiums 2.032 ∗ 10−1

Outer [ Relaxed ] [ 1 ] Time : 793 .041 seconds

BR : [ 748.513 , 491.870 , 210.517 , 862.170 , 1.267 ]

NI : [ 748.512 , 489.813 , 210.513 , 862.134 , 0.017 ]

P e n a l t i e s : [ 5.329 ∗ 10−14 , 5.329 ∗ 10−14 , 6.040 ∗ 10−14 , 1.386 ∗ 10−13 , 4.718 ∗ 10−4 ]

∆ p r i c e s 1.815 ∗ 10−4

∆ premiums 3.250 ∗ 10−4

Outer [ Relaxed ] [ 2 ] Time : 670 .903 seconds

BR : [ 748.501 , 492.114 , 210.460 , 862.138 , 1.242 ]

NI : [ 748.501 , 492.113 , 210.453 , 862.138 , 1.241 ]

P e n a l t i e s : [ 4.619 ∗ 10−14 , 5.329 ∗ 10−14 , 5.329 ∗ 10−14 , 1.386 ∗ 10−13 , 4.718 ∗ 10−04 ]

∆ p r i c e s 2.295 ∗ 10−6

∆ premiums 1.270 ∗ 10−7

Outer [ S t r i c t ] [ 3 ] Time : 352 .612 seconds

BR : [ 747.797 , 491.862 , 208.375 , 853.319 , 1.176 ]

NI : [ 747.795 , 491.861 , 208.375 , 853.319 , 1.177 ]

P e n a l t i e s : [ 8.171 ∗ 10−14 , 4.263 ∗ 10−14 , 1.741 ∗ 10−13 , 5.933 ∗ 10−13 , 5.149 ∗ 10−13 ]

These iterations display several key properties of our approach and the problem. First,
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they illustrate how convergence occurs through various margins. At each iteration, we
present the best response profits (BR) versus the profits implied by all the best responses
(NI, for Nikaido-Isoda) for each firm. Formally, for an initial condition vector (c1, . . . , c5)
and best responses (c∗1(c−1), . . . , c∗5(c−5)), BR profits correspond to Ṽm(c∗m(c), c−m) and NI
profits are Ṽm(c∗m(c), c∗

−m(c)), where Ṽm is the total profit of insurer m net of underwriting
cost. A vector of coverages c∗ is a Nash equilibrium if and only if BR and NI profits match.
The iterations reveal the rate at which this convergence is attained.

Additionally, the iterations show how insurer tiering penalties converge. They indicate
that throughout our iterations, all but one firm satisfy the tiering constraint almost exactly.
Our algorithm identifies that at the third iteration (marked [Relaxed][2]), the coverage
vector is stable, but tiering constraints are not all satisfied. This triggers a new cycle
(marked [Strict]) in which any violating coverage vector is adjusted to its nearest tiered
configuration, serving as a starting point, and the convergence tolerance on firms’ best
response solver is substantially increased. As shown, the subsequent iteration results in
an equilibrium with insignificant tiering violations. Intuitively, this improvement occurs
because the profit objective of the last insurer is nearly flat on its coverage decision,
necessitating a shift in its initial condition and convergence criteria to attain the optimum.

Finally, the iterations illustrate how changes to the coverage structure affect the sub-
game price equilibrium at the end of every iteration. Changes are shown in the Euclidean
norm, indicating that as coverage converges, equilibrium prices and premiums also con-
verge. Importantly, this reflects the local stability of the equilibrium: small changes in
coverage do not induce large changes in prices or premiums.

It is worth noting that the counterfactual presented above was chosen for its few itera-
tions to demonstrate full convergence. Our main VI ban counterfactual takes considerably
longer to solve (approximately 8 hours) but shares the same properties.
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Figure A.1: Location of hospitals and enrollees in the market
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Notes: This figure shows the location of hospitals in the market. The map covers most of urban Santiago, our market of interest. Green
circles indicate independent hospitals, red triangles indicate hospitals vertically integrated with insurer ma, blue diamonds indicate
those vertically integrated with insurer mb, and black squares indicate those integrated with mc. Finally, numbers indicate the share of
enrollees from each county on the map. Some counties located further away are omitted from the plot for convenience but are included
in the analysis. Relative to the full population distribution, there is a noticeable enrollment concentration in the city’s wealthier areas
(from the center of the figure to the northeast). However, there is clear dispersion in the location of enrollees relative to hospitals.
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Figure A.2: Vertical integration, hospital choices, and expenditure (movers subsample)
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(b) Any claims in VI hospital

3 2 1 0 1 2
Years since switching to VI insurer

0.1

0.0

0.1

0.2

0.3

0.4

 E
ffe

ct
 o

n 
lo

g 
ex

pe
nd

itu
re

 in
 V

I h
os

pi
ta

l

(c) Expenditure in VI hospital

Notes: This figure displays event study estimates from equation (4) in the main text for a subsample of enrollees that move across
neighborhoods. This subsample includes 18 percent of the enrollees in the main analysis. The coefficient for the year before the patient
switches is set to zero. Green dots and orange squares are estimates of βτ and γτ in equation (4), respectively. Dashed lines indicate
95% confidence intervals. The dependent variable in Figure A.2c is log(1 + y) to accommodate zeros, but the results are similar when
using expenditure in levels.
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Figure A.3: Estimates of hospital specialization
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Notes: This figure presents estimates of consumers’ average preference for hospital-diagnosis pairs. These correspond to χH
hdt in

equation (5), averaged across years and normalized with respect to the outside option. Diagnosis groups correspond to ICD-10
diagnosis chapters, and hospitals match our anonymized identifiers. Hospitals 1 and 6 correspond to the star hospitals in our data.
Hospitals 2, 3, and 8 are integrated with insurer ma, and hospitals 4, 7, and 11 are integrated with insurer mb. Hospital 10 is integrated
with insurer mc in the first year of the data.
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Figure A.4: Counterfactual preferential structure, demand, and prices
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Notes: Figures (a) and (b) illustrate the number of plans of each insurer (rows) that have each hospital (columns) as preferential.
Figure (c) shows the change in hospital demand within each insurer. Changes add up to zero within each column. Figure (d) shows
the percent change in negotiated prices between each hospital and insurer. Hospitals 1 and 6 correspond to the highest-quality and
highest-priced non-VI hospitals in our data. Hospitals 2, 3, and 8 are integrated with insurer ma, and hospitals 4, 7, and 11 are integrated
with insurer mb.
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Figure A.5: Effects of banning VI under cost efficiencies and quality gains
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(a) Cost efficiencies
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(b) Quality effect

Notes: Figure (a) shows the effect of banning VI in the presence of cost efficiencies. The x-axis represents the percent increase in
hospital costs for formerly VI hospitals when serving former partners under the VI ban. Figure (b) shows the effect of banning VI
under quality effects. This is computed by assuming that different shares of the VI marketing effect represent true quality differentials.
This only affects the baseline surplus value as both marketing and quality changes disappear in the counterfactual, leading to the same
equilibrium.
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Figure A.6: Effects of banning VI under alternative elasticities

0.1 0.25 0.5 0.75 1.0
Premium coefficient scale

1.
0

0.
75

0.
5

0.
25

0.
1

P
ric

e 
co

ef
fic

ie
nt

 s
ca

le

-3.0 -2.3 -1.7 -0.7 -0.0

-3.1 -2.3 -1.2 0.3 0.1

-3.2 -1.9 0.4 1.8 2.2

-3.1 -0.5 -0.7 -0.9 1.2

2.1 -1.7 -3.1 -3.0 -2.7

(a) Total welfare

0.1 0.25 0.5 0.75 1.0
Premium coefficient scale

1.
0

0.
75

0.
5

0.
25

0.
1

P
ric

e 
co

ef
fic

ie
nt

 s
ca

le

0.4 -0.3 -1.0 -1.4 0.0

0.5 -0.1 0.1 0.7 0.0

0.5 0.5 0.8 0.5 -2.1

0.5 -0.3 -2.2 -2.3 -2.4

0.1 -2.6 -3.4 -3.4 -3.5

(b) Consumer surplus

0.1 0.25 0.5 0.75 1.0
Premium coefficient scale

1.
0

0.
75

0.
5

0.
25

0.
1

P
ric

e 
co

ef
fic

ie
nt

 s
ca

le

2.4 2.2 2.0 2.1 0.0

2.3 2.1 1.1 0.4 -0.6

1.9 1.9 -0.4 -3.5 -4.4

1.7 -2.5 -4.5 -4.8 -5.0

-4.1 -5.4 -5.8 -6.0 -6.2

(c) Hospital profits
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(d) VI hospital profits

0.1 0.25 0.5 0.75 1.0
Premium coefficient scale

1.
0

0.
75

0.
5

0.
25

0.
1

P
ric

e 
co

ef
fic

ie
nt

 s
ca

le

-4.0 -3.5 -3.0 -2.9 -0.0

-3.9 -3.4 -2.5 -1.6 0.9

-3.9 -3.2 -1.3 4.2 5.1

-3.8 3.1 5.1 5.5 5.6

4.7 5.9 6.4 6.5 6.8

(e) Insurer profits
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(f) VI insurer profits

Notes: These figures show the change in welfare from banning VI under alternative price and premium elasticity in log scale relative
to the results of the main analysis. Formally, letting (θx, θy) be the multipliers on the horizontal and vertical axes, and ∆TW(αH , αM)
denote the change in total welfare produced from banning VI when consumers’ price coefficient is αH and premium coefficient is
αM, each cell consists of computing v(θx, θy) = ∆TW(θxαH , θyαM)/|∆TW(αH , αM)| and reporting sign(v)log(|v|). Note that each cell
requires computing two full (medium run) counterfactual equilibria, one for the simulated baseline and one for the counterfactual
under a VI ban. In both cases, the starting point is the observed status quo to retain our equilibrium notion and consistent treatment of
counterfactual simulations. This, however, implies that the VI ban counterfactual in each cell might not be the closest local equilibrium
to its baseline comparison. Therefore, we adjust all values relative to our main estimates such that the welfare change in the top right
corner equals the simulated baseline.
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Figure A.7: Convergence rate of supply-side MLE parameters
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Notes: These figures show the convergence rate of model estimates governing price and premium setting. The x-axis shows the
iterations of the nested algorithm. In the figures, θt stands for the vector of VI weights in the t-th iteration of the solver, and x∗(θt)
is the vector of all MLE parameters conditional in the t-th iteration. Figure (a) shows the rate at which the log-likelihood and the VI
weights converge. Figure (b) shows that the MLE parameters converge at a nearly identical rate as the VI weights.
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Figure A.8: Performance of plan design solver
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(b) Insurer 2 best response
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Notes: These figures show how the solution of our regularized convergent approach compares against grid-search. Panels (a) and (b)
present the best responses of two firms. Green circles show the profit objective value at each of the 20,480 different designs evaluated.
We run our regularized solver from 30 random starting points and report the range of results obtained. For ease of comparison,
the vertical axis represents the normalized objective relative to the minimum and maximum grid-search value. Panel (c) shows the
execution time associated with solving a firm’s best response problem for different numbers of plans. The straight green line shows
the time in seconds for the brute force grid search approach, inferred from the time it takes to compute a single objective evaluation,
scaled by the number of evaluations associated with each problem. The dashed orange line is the mean compute time associated with
solving the associated problem for Insurer 1 from five random starting points. All computations were done sequentially on an Nvidia
A100 GPU. Panel (d) shows the fit between the equilibrium result derived from our approach relative to that found by grid search. In
the first two columns, we plot the distribution of ε j = (πR

j − π
B
j )/πB

j where πB
j is the brute-force equilibrium profit of firm j, and πR

j

is the regularized equilibrium profit of the same firm. The third column shows the distribution of (
∑2

j=1 ε
2
j )1/2 across the 30 starting

points.
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Table A.1: Descriptive statistics

N Mean SD p10 p50 p90

A - Policyholder attributes

Age 3,946,900 39.93 10.37 27.00 38.00 56.00
Single female 3,946,900 0.24 0.42 0.00 0.00 1.00
Single male 3,946,900 0.34 0.47 0.00 0.00 1.00
Number of dependents 3,946,900 0.81 1.17 0.00 0.00 3.00
Income 3,946,900 1.63 1.02 0.00 1.58 2.93
Paid premium 3,946,900 0.17 0.11 0.07 0.15 0.31
B - Plan network structure

Tiered network plan 1,431 0.88 0.32 0.00 1.00 1.00
Tiered network plan | VI insurer 671 0.90 0.29 1.00 1.00 1.00
Tiered network plan | Non-VI insurer 760 0.86 0.35 0.00 1.00 1.00
Preferential coverage rate 1,431 77.33 12.79 60.00 80.00 90.64
Preferential coverage rate | VI insurer 671 74.37 11.96 58.32 76.70 89.11
Preferential coverage rate | Non-VI insurer 760 79.95 12.93 63.08 80.00 96.82
Base coverage rate 1,431 59.85 18.11 36.58 60.00 82.97
Base coverage rate | VI insurer 671 58.16 14.70 40.00 56.86 78.81
Base coverage rate | Non-VI insurer 760 61.34 20.55 32.69 64.82 84.74
C - Admission attributes at inside hospitals

Full price 569,371 4.61 4.90 0.85 3.12 9.79
OOP share 569,371 0.24 0.24 0.00 0.12 0.63
Distance to hospital 569,371 7.47 6.27 0.00 5.96 15.13
Hospital is in preferential tier 569,371 0.64 0.48 0.00 1.00 1.00
Patient is enrollee of VI insurer | VI hospital 308,023 0.61 0.49 0.00 1.00 1.00
Patient is enrollee of VI insurer | Non-VI hospital 261,348 0.39 0.49 0.00 0.00 1.00
Full price at outside option 203,893 1.78 2.61 0.18 1.33 3.78

Notes: This table displays descriptive statistics for our estimating plans dataset. Panel A displays statistics across all policyholders in
the sample. Panel B displays statistics for plan attributes across all plan-years in the sample offered in the spot market (i.e., excluding
legacy plans held by consumers on guaranteed renewability). Panel C displays statistics across all admissions in the main hospitals
included in our analysis unless otherwise noted. All monetary amounts are measured in thousands of U.S. dollars for December 30,
2014. Distance in miles.
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Table A.2: Descriptive statistics for insurers and hospitals

A - Insurer market shares and premiums

Market Paid premium

Insurer share Mean SD p10 p50 p90

ma 19.87 0.14 0.08 0.06 0.12 0.24
mb 29.62 0.18 0.11 0.07 0.15 0.32
mc 17.26 0.20 0.13 0.08 0.17 0.37
md 22.59 0.18 0.11 0.07 0.15 0.31
me 10.66 0.16 0.10 0.07 0.14 0.29

B - Hospital market shares and prices

Market Full price

Hospital share Mean SD p10 p50 p90

h1 13.33 6.17 5.79 0.91 4.55 12.73
h2 4.31 2.56 2.55 0.81 1.93 4.72
h3 4.25 2.89 3.68 0.62 2.09 5.91
h4 11.46 3.03 3.88 0.45 2.02 5.95
h5 10.46 3.92 3.66 0.83 3.29 7.01
h6 7.87 7.08 6.31 1.45 5.13 14.66
h7 13.79 4.40 4.61 0.81 3.16 9.04
h8 2.65 4.03 4.26 0.83 2.83 8.87
h9 1.24 3.84 4.81 0.32 2.61 7.95
h10 2.26 4.63 4.03 1.05 3.62 8.56
h11 2.72 2.73 2.70 0.55 2.09 5.24
Other 25.66 1.75 2.53 0.18 1.31 3.74

Notes: This table displays descriptive statistics for our estimating admissions dataset. Only admissions on the hospitals in the sample
are considered for these statistics. Panel A displays statistics across all hospitals in the sample. Panel B displays statistics for market
shares and full prices by hospital.
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Table A.3: Preferential tiering and admission flows between hospitals and insurers

A - Percent of plans in which B - Percent of admissions
hospital is in preferential tier by patient insurer

Hospital ma mb mc md me ma mb mc md me

h1 0.99 4.30 43.81 15.08 0.75 5.17 30.74 31.42 25.55 7.11
h2 69.17 3.49 0.00 48.24 0.00 57.13 10.93 7.77 21.49 2.68
h3 49.21 20.16 6.35 43.97 41.04 63.84 7.31 5.57 21.86 1.43
h4 46.84 95.70 4.44 53.27 0.00 11.48 70.76 5.21 10.88 1.67
h5 15.02 45.43 1.59 52.51 81.34 8.40 18.29 22.06 24.28 26.97
h6 0.00 4.03 0.95 8.29 0.00 4.84 35.81 30.96 20.55 7.84
h7 0.59 74.73 23.17 31.66 46.27 4.10 56.44 15.86 17.46 6.14
h8 36.76 0.00 0.32 38.19 0.00 42.93 18.38 16.15 18.51 4.03
h9 0.00 0.00 0.00 0.50 10.45 19.91 0.73 8.78 69.84 0.74
h10 0.00 0.27 17.46 0.00 9.33 2.91 17.94 58.87 14.86 5.42
h11 6.32 48.92 2.86 7.79 0.00 16.53 66.70 5.99 8.40 2.38
Other - - - - - 25.49 13.51 18.67 30.59 11.75

Notes: Panel A displays the share of plans offered in the spot market by each insurer that has a hospital in its preferential tier,
with hospitals in the rows and insurers in the columns. The sample includes the set of plans that enter demand estimation and the
supply-side analysis. Panel B displays a breakdown of the admission shares. Each cell in columns labeled ma −me displays the share
of admissions that a given hospital received from each insurer. Cells that relate to VI firms are underlined. Recall that mc and h10 are
only VI in the first year of our sample.
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Table A.4: Vertical integration and market outcomes (within insurer-hospital)

(1) (2) (3) (4) (5) (6) (7) (8)

A - Plan design B - Admission outcomes C - Hospital outcomes

Preferential Coverage log log Re- log Share of log
hospital rate cost proxy # services admission price admissions revenue

VI 0.169 5.224 0.040 -0.012 0.005 -0.076 0.044 0.297
(0.006) (0.325) (0.025) (0.011) (0.006) (0.021) (0.004) (0.051)

N 15,741 15,741 567,752 567,752 204,223 567,752 264 264
R2 0.212 0.254 0.212 0.613 0.059 0.694 0.988 0.976
Mean non-VI 0.137 63.101 2.534 16.039 0.081 5.269 0.128 8,865.659
H-I FE Y Y Y Y Y Y Y Y
Year FE Y Y N N N N Y Y
Interacted FE N N Y Y Y Y N N
Plan FE N N Y Y Y Y N N
Cost proxy N N N Y Y Y N N
Controls N N Y Y Y Y N N

Observation plan-hospital-year admission insurer-hospital-year

Notes: This table shows results from estimating equations (1), (2) and (3) with hospital-insurer FEs. This specification relies exclusively
on the disintegration of insurer mc and hospital h10 in 2014. The interaction between mc and h10 provides a small case study covering
only 1.8 percent of admissions. The unit of observation for each regression is reported in the bottom row. Regressions in columns
(3)–(6) include the following controls: diagnosis fixed effects, patient age, gender, policyholder income, policyholder employment
status, and county fixed effects, along with the fixed effects indicated in the table. Columns (4)–(6) also include admission prices
in the public system, interacted with hospital dummies. Column (5) only includes admissions for circulatory, infections, pregnancy,
and respiratory diagnoses. Mean non-VI indicates the mean of the dependent variable for non-VI observations, measured in levels.
Interacted FE indicates diagnosis-hospital, diagnosis-year, and hospital-year fixed effects. Standard errors in parentheses are clustered
at the insurer-hospital level.
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Table A.5: Relationship between patient observables and VI

(1) (2) (3) (4)

Regression results

Patient attribute Mean non-VI No controls Controls Within I-H

Age 31.468 β̂VI 2.882 1.126 -0.986
S.E. (0.896) (0.318) (0.391)
R2 0.006 0.290 0.291

Female 0.590 β̂VI -0.059 -0.011 0.019
S.E. (0.022) (0.006) (0.015)
R2 0.003 0.240 0.241

Employed 0.851 β̂VI 0.020 -0.004 -0.012
S.E. (0.014) (0.003) (0.022)
R2 0.001 0.045 0.046

log(Income) 2.069 β̂VI -0.170 -0.039 0.018
S.E. (0.046) (0.017) (0.120)
R2 0.001 0.031 0.031

Interacted FE N Y Y
Plan FE N Y Y
County FE N Y Y
I-H FE N N Y

Notes: This table shows results from estimating equation (2) using patient observables as dependent variable, as indicated in the first
column. The unit of observation is an admission. Mean non-VI indicates the mean of the dependent variable for non-VI observations,
measured in levels. Each column is a different specification, as indicated in the bottom panel. For each regression, we report the
coefficient associated to VIm( j)ht. Interacted FE indicates diagnosis-hospital, diagnosis-year, and hospital-year fixed effects. Standard
errors in parentheses are clustered at the insurer-hospital level.
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Table A.6: Vertical integration and hospital treatment behavior

(1) (2) (3) (4) (5)

C-section Ultrasound Hemogram Chest X-ray Imaging

A - Main specification

VI -0.112 -0.001 -0.022 0.015 0.003
(0.030) (0.001) (0.020) (0.009) (0.002)

Interacted FE Y Y Y Y Y
Plan FE Y Y Y Y Y
Cost proxy Y Y Y Y Y
Controls Y Y Y Y Y

B - Within hospital-insurer

VI 0.116 0.003 0.009 -0.017 0.011
(0.081) (0.003) (0.042) (0.051) (0.006)

H-I FE Y Y Y Y Y
Interacted FE Y Y Y Y Y
Plan FE Y Y Y Y Y
Cost proxy Y Y Y Y Y
Controls Y Y Y Y Y

N 77,715 77,715 99,265 61,518 61,518
R2 0.440 0.030 0.096 0.179 0.012
Mean non-VI 0.563 0.003 0.558 0.301 0.018

Notes: This table shows results from estimating equation (2). The unit of observation is an admission. The dependent variable is an
indicator of whether a service that relies at least partially on physician discretion was delivered to the patient. These regressions include
the following controls: diagnosis fixed effects, admission prices in the public system interacted with hospital dummies, patient age,
gender, policyholder income, policyholder employment status, and county fixed effects, along with the fixed effects indicated in the
table. Mean non-VI indicates the mean of the dependent variable for non-VI observations, measured in levels. Interacted FE indicates
diagnosis-hospital, diagnosis-year, and hospital-year fixed effects. Standard errors in parentheses are clustered at the insurer-hospital
level.

42



Table A.7: Instrument first stage and estimated consumer preferences without instruments

(1) (2) (3) (4)

A - Healthcare B - Insurance

Coef. S.E. Coef. S.E.

I - Instrument first stage

Predicted closed-insurer OOP 0.754 (0.000)
Rival actuarially fair premiums 2.292 (0.042)

N 10,474,104 23,160
R2 0.605 0.856

II - Estimates without instruments

A: Price (αH
i ) / B: Monthly Premium (αM

i )
× Age ∈ [25, 40) -1.410 (0.010) -25.867 (0.051)
× Age ∈ [40, 55) -1.178 (0.019) -23.613 (0.051)
× Age ∈ [55, 65] -1.139 (0.010) -24.029 (0.052)
× Female × Single 0.243 (0.010) 10.134 (0.050)
× Has dependents 0.179 (0.009) 13.231 (0.047)
× High income 0.272 (0.005) 11.878 (0.024)

Distance (βH) -0.092 (0.001)
VI Marketing (γH) 2.400 (0.006)
Network (βM) 0.921 (0.005)

Median elasticity -0.67 -1.96
N 261,857 163,034,142

Notes: Panel I presents the key first-stage estimates associated with the demand instruments. Panel A presents the regression of
consumer out-of-pocket prices for each option within their hospital demand choice set on the instrument. The regression includes
distance and year-provider-diagonsis-insurer fixed effects, matching the covariates that are included in the demand model. Panel
B presents the regression of plan premiums on the plan’s rival actuarially fair premiums. The regression also includes the network
utility instruments (average rival network utilities, share of rival plans with the same preferential hospitals, and share of other plans
of the same insurer in the same segment with the same preferential hospitals). It also includes insurer-age fixed effects to match
our specification of plan preferences. The sample is substantially smaller as this regression is at the plan-year level as premiums do
not vary across consumers conditional on plan. Panel II shows the estimated preferences when estimated without the instruments.
Panel A presents estimates of preferences for hospitals. The sample size is a 30 percent random sample of non-emergency inpatient
events used to estimate preferences. The model includes insurer-hospital-diagnosis-year fixed effects, omitted from the table. Panel
B presents estimates of preferences for plans. The model includes an insurer-year fixed effect, omitted from the table. Heterogeneity
in price and premium preferences depend on policyholder attributes, where high income indicates those above the median income.
Prices, premiums, and network surplus are measured in thousands of dollars. Network surplus is measured based on yearly risk and
spending. Distance is measured in miles from neighborhood centroids to hospitals. The reported elasticities are the median own-price
in Panel A and own-premium in Panel B.
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Table A.8: Heterogeneity in effects of vertical integration consumer surplus

A - Full effect B - Decomposition

Short run Medium run

Change Change Change

Policyholder neighborhood

Center 6.94 -2.85 9.79
North 35.53 -23.74 59.27
Northeast 16.02 -34.46 50.48
Northwest 8.72 -9.90 18.62
Periphery 45.10 -27.13 72.23
South 25.88 -46.30 72.18
Southeast 39.24 -46.61 85.85
Southwest 22.29 -20.59 42.89

Policyholder household type

Single female 1.27 -8.09 9.36
Single male 5.86 -3.03 8.90
Has dependents 32.57 -45.90 78.46

Policyholder income

Below median 10.88 -7.47 18.35
Above median 36.23 -80.86 117.09

Policyholder age

Below 45 9.75 -13.99 23.74
Above 45 20.79 -28.16 48.94

Policyholder insurance program

Private insurance 28.73 -34.78 63.51
Public insurance 11.19 -17.12 28.32

Notes: This table displays average changes in consumer surplus per policyholder by population groups in dollars relative to the status
quo. Panel A displays the Full effect of banning VI. Panel B displays partial changes: Short run keeps coverage fixed, and Medium
run shows the additional impact of coverage adjustments. Their sum is the Full effect.
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Table A.9: Effects of single-firm vertical integration on plan design and hospital prices

(1) (2) (3) (4) (5) (6)

Baseline A - Ban ma’s VI B - Ban mb’s VI

Raw Weighted Raw
change

Weighted
change

Raw
change

Weighted
change

Hospital prices (by hospital / insurer)

Within ma 3.43 3.43 0.27 -0.18 16.18 13.49
ma-VI / mb 4.07 4.07 -0.16 -0.25 -0.19 0.01
ma-VI / Non-VI 3.77 3.77 -0.29 -0.25 -0.47 -0.48
Within mb 3.88 3.88 -0.79 -0.80 -0.22 -0.30
mb-VI / ma 3.59 3.59 1.02 -0.01 45.52 0.92
mb-VI / Non-VI 3.61 3.61 1.17 -0.15 0.49 -0.54
Non-VI / ma 5.71 5.71 0.16 0.09 1.95 2.74
Non-VI / mb 6.10 6.10 0.09 1.16 0.55 0.96
Non-VI / Non-VI 5.44 5.44 1.10 0.24 1.83 0.76
Public / Non-VI 1.58 1.58 0.00 -0.03 0.00 -0.03
Public / ma 1.57 1.57 0.00 -0.02 0.00 -0.05
Public / mb 1.57 1.57 0.00 0.00 0.00 -0.06
Total 4.32 4.32 0.45 -0.03 4.72 0.64

Premiums (by insurer)

Insurer ma 1.11 1.11 0.11 0.07 0.02 -0.53
Insurer mb 1.40 1.40 0.55 0.49 0.17 0.10
Non-VI 1.38 1.38 -0.02 -0.08 -0.07 -0.12
Total 1.31 1.31 0.12 0.09 -0.00 -0.18

Plan design (by insurer)

ma - Base coverage 58.52 58.90 -6.08 -8.54 -25.95 -29.15
ma - Preferential coverage 81.54 83.46 -0.71 -1.92 3.69 4.52
ma - Self-preferencing 57.60 53.04 -31.73 -30.35 0.27 19.83
ma - Other-VI-preferencing 16.80 14.78 -12.53 -6.73 10.40 12.75
ma - Non-VI-preferencing 2.88 2.45 0.00 -0.87 8.00 1.22
ma - Star-hospital-preferencing 0.00 0.00 6.80 3.76 27.20 9.18
mb - Base coverage 43.63 43.07 -13.60 -13.17 -9.36 -7.73
mb - Preferential coverage 73.12 72.51 13.12 9.52 11.26 9.00
mb - Self-preferencing 77.38 77.82 2.78 9.39 -8.33 -15.79
mb - Other-VI-preferencing 10.32 11.73 -10.32 -11.73 -0.40 0.32
mb - Non-VI-preferencing 7.38 6.27 30.71 30.65 2.38 -1.01
mb - Star-hospital-preferencing 1.19 0.68 94.05 91.63 7.14 3.80
Non-VI - Base coverage 58.88 58.67 -14.26 -14.75 -19.95 -18.74
Non-VI - Preferential coverage 85.75 84.94 0.78 0.91 -1.57 -1.77
Non-VI - Other-VI-preferencing 22.12 21.40 -8.00 -7.84 -8.62 -8.00
Non-VI - Non-VI-preferencing 16.91 17.98 -6.36 -9.28 -6.87 -8.51
Non-VI - Star-hospital-preferencing 13.97 18.22 2.39 -4.22 2.02 -2.47

Healthcare spending

Actuarial value 0.66 0.66 -0.02 -0.03 -0.01 -0.02
Inpatient spending | private plan 0.82 1.04 0.03 0.01 0.18 0.20
Inpatient spending 1.16 0.50 0.03 -0.00 0.18 0.06
Total household spending 3.02 1.10 0.16 0.04 -0.00 -0.06

Notes: Prices in thousands of dollars per unit of resources, premiums in thousands per year, coverage in percentages, and healthcare
spending in thousands per household. Actuarial value is the share of expected payments covered by insurers. VI Self-preferencing is
the likelihood that a VI hospital is preferential in a VI plan. Other-VI-preferencing and Non-VI-preferencing are analogous for other-VI
and non-VI hospitals. Odd columns display raw averages: for prices, it is across insurer-hospital; for premiums and coverages, it is
across plans. Even columns display weighted averages by demand: for prices, it is by demand per unit of resources; for premiums,
coverage, and spending, it is by plan demand. We omit unweighted spending since it is necessarily linked to plan enrollment
probabilities. Panels A and B display the Full effect of banning VI for ma and mb, respectively.

45



Table A.10: Effects of single-firm vertical integration ban on choices and welfare

(1) (2) (3)

A - Ban ma’s VI B - Ban mb’s VI

Baseline Change Change

Efficiency

Moral hazard spending 44.10% -2.26% -14.72%

Market shares

ma-VI hospital 11.11% -5.44 3.93
mb-VI hospital 27.56% -4.45 -12.90
Non-VI hospital 30.95% 3.28 -9.85
Insurer ma 3.69% -0.84 2.04
Insurer mb 7.15% -1.50 -2.39
Non-VI insurer 13.18% 1.50 1.66

Admission shares (by hospital / insurer)

Within ma 55.84% -43.71 5.03
ma-VI / mb 6.42% -1.29 3.43
ma-VI / Non-VI 37.74% 45.00 -8.45
Within mb 78.51% -14.37 -52.81
mb-VI / ma 2.69% 1.08 1.77
mb-VI / Non-VI 18.80% 13.29 51.05
Non-VI / ma 9.96% 0.15 0.95
Non-VI / mb 12.99% 16.31 12.44
Non-VI / Non-VI 77.05% -16.46 -13.39

Profits (in millions)

ma hospitals 34.900 -17.367 385.295
mb hospitals 70.141 -45.474 -39.674
Non-VI hospitals 109.570 10.941 23.416
Insurer ma 159.950 -25.287 -455.203
Insurer mb 394.733 109.736 -103.417
Non-VI insurers 713.817 58.776 79.479

Consumer surplus

ma enrollees (per member) - 0.335 0.669
mb enrollees (per member) - -0.029 -0.230
Non-VI enrollees (per member) - 5.773 7.541
Total consumer surplus (millions) - 257.418 154.284
Share better off - 0.603 0.806
Share better off relative to ma ban - - 0.860

Total welfare (in millions) - 348.74 44.18

Notes: Moral hazard spending is relative to the first best inpatient spending. Profits and total consumer surplus are measured in millions
of dollars per year. Consumer surplus for VI enrollees is the average surplus conditional on enrolling in a VI plan, unweighted by
demand. Non-VI consumer surplus is defined analogously. All values are in thousands of dollars unless stated otherwise. Panels A
and B display the Full effect of banning VI for Ma and mb, respectively.
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