
Coding Primer: A Reference Guide
July 30, 2020

Note: this tutorial is work in progress. If you find typos or have suggestions please email
me at benjaminvatterj@u.northwestern.edu

1 Preliminaries: Coding Environment, Projects Structure
and Versioning

Here we discuss how to setup your coding environment, organize your code and keep track
of the versions of your projects. Although the majority of this handout consists of references
to other sources and exercises, this chapter is mostly self contained. It is worth stating
that the ideas expressed here are our personal views on the subject, although other guides
have been written on the subject. For other references see Gentzkow and Shapiro’s (2014)
"Code and data for the social sciences: a practitioner’s guide".

1.1 Pre-preliminary

This guide is set up to work with Python 3 and Git. Installing and managing these tools
requires some prior knowledge of the terminal. We recommend that you begin by reading
the appendix of "Python the Hard Way" (PHW) called "Command Line Crash Course".
Once you have done this, go ahead and install these before doing anything else. How you
go about installing it depends on your OS, but some references are provided in chapter 0
of PHW.

A couple of warnings regarding PHW. First, be careful when looking for a version of
PHW online, because the first three editions where written for Python 2, which is now
deprecated. Second, PHW is known as one of the best books for learning how to program
in python, however it is oriented to a very general audience. This implies that it will
assume that you know basically nothing about coding, which is likely to not be the case if
you are a graduate student. This might make the exercises a bit slow for some of you, so
feel free to skip the things that you deem obvious. Finally, PHW recommends using Atom
which is very similar to Sublime and suggests avoiding VIM. Starting with Atom/Sublime
is of course great if you are completely inexperienced. If, however, you have coded before it
might worth to make the investment and learn how to use something more sophisticated.

1.2 Coding Environment

Having a good coding environment is crucial for an efficient work-flow. Many economics
graduate students are used to working in integrated development settings such as the ones
provided by Stata or Matlab. However, the majority of coding actually takes place in non-
integrated environments, and for good reasons: they are agnostic to the language, they do
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not hang when you run your code (unlike Stata), and they are often customizable to your
liking. In general, we would like our editor to have a series of features:

1. File management: often a side bar that can be toggled on and off to create, delete,
move files without having to leave the editor.

2. Tag/Jump-to capabilities: Codes tend to become large. Being able to quickly view
the list of functions that are defined in a side panel, and jump to them through a
click, is extremely useful. Some even let you define your own tags as you work, to
move around easily.

3. Linters: Linters provide integrated code-checking to your editor (if you are familiar
with Matlab, this when matlab draws a red or yellow line while you code). There are
linters for almost all languages and a good editor should recognize the language you
are working in and activate the corresponding linter (if installed).

4. Git gutter: In the next subsection we will talk about versioning. For now, think of
a Git gutter as something that marks what part of your code is new relative to the
last time you worked on it. This is really useful when the code become long.

5. Search/Replace: now this sounds obvious, but wait until you learn how good a good
search and replace can be.

6. Split screen: Split screens are very useful when you are debugging and trying to
connect the different parts of your code and remember how they interact.

There are many (MANY) alternatives out there, but here I will just focus on two alter-
natives. I would recommend you pick one of the two and try it for a bit, and after you feel
comfortable with it, look around for the things you think it is missing. Disclaimer: yes,
you can run Stata and Matlab code directly from external editors.

Sublime Text (the easy way): Sublime is a very popular editor. It comes with very few
capabilities, but you can install plugins that do the rest for you. There are many tutorials
on how to setup Sublime Text (here is one). In general what you want to have in Sublime
is the following:

1. Install subl, package control

2. Install some cool theme that makes it easy for you to read the code (e.g Molokai,
Bad Wolf)

3. Install plugins: SidebBarEnhancements, SublimeLinter (and install a linter for the
python 3 lenguage, such as pyflakes. Also install a linter for the proper coding
style in python like pycodestyle), GitGutter, FTPSync, and Anaconda (if you want
autocomplete while you type in Python).
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4. Learn the keyboard shortcuts for: jump-to, toggeling the side bar, splitting the screen.

5. Extra credit: setup shortcuts to execute your code from the editor. Add CTags or
other plugin that gives you a function declaration sidebar.

VIM (the hard way): The VIM editor has been around since the 90s, and it is still one of
the most popular editors among programmers. Like sublime, it comes with almost nothing
on it’s own but it can be extended with plugins to get all the required feature. It has,
however, three key distinctions that makes it a popular choice 1:

1. Portability: VIM is available on all systems, and it is preinstalled in almost all Linux
systems. Additionally, all your configuration is held on a single file. These two
features mean that you can have your favorite setup on every computer you connect
to, edit remotely on servers as if it was on your own system.

2. Programmatic Macros and Search/Replace: In VIM, you interact with the editor
through commands which can be recorded and repeated. The search/replace option
has a powerful Regular Expression that allows for conditionals, groups and multiple
matches.

3. Lightweight: Finally, VIM uses very few resources. Unlike popular editors such as
Sublime and Atom, VIM doesn’t eat into you RAM as much.

The downside of VIM however is it’s difficulty (The stack overflow page on how to exit
VIM has over a million views!). The learning curve is steep but it’s worth it. If you want
to suffer a little bit, I have left my configuration file in this chapter’s folder. How you
install VIM depends on your platform and it is likely to already be installed. Before using
my ".vimrc" file you should install vim-plug. Some tutorials on vim you should check:

• Tutorial by Daniel Miessler

• Interactive Guide

• There’s even a game!

1.3 Versioning: GIT

Have you been keeping "my_script_v1.do" to "my_script_v231.do" in a messy folder in
which you can no longer remember what was the difference between version 2 and 100? then
versioning is what you are doing wrong. Vim is the supreme-ruler of versioning software.

1Another great tool in VIM is GUNDO, which is an undo feature that keeps track of your edits in a tree
structure. If you have ever done a ctrl+z then small typo an then tried to revert without luck, then you
will appreciate GUNDO.
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It allows you to keep your folder clean by maintaining versions of your code behind the
scene. Everyone should use it (or other versioning tool) as it is useful both for coding and
for writing in latex. Enough said, here are some tutorials:

1. A learning-by-doing tutorial. Recommended by Github

2. The Bitbucket tutorial

3. The Vogella tutorial, form basic to really advanced.

1.4 Project Structure

This is the most personal part of this chapter. The way we organize code in folders makes a
big difference in the long run. In general, I recommend you always code knowing that you
will forget why and how you did things. Keep things clean and clear, and things should
work out fine. Here I present the way I do things and why.

Broadly speaking, we can classify codes in economics into two categories, which for
lack of better names we will call: Sequential and Modular. This is a separation that often
follows a chronological order. Sequential codes are common in the first steps of a project,
which involves writing a sequence of scripts that clean, merge and provide descriptive
representations of your data. The most important part of this type of codes is the sequence
in which things run. Additionally, it is often a stage that is very project-specific with little
scope for reuse of previous scripts or functionalities. Another characteristic of this sort of
stage is that once the data-stage of your project is done, you will never run these scripts
again and review them very rarely. Therefore, Sequential parts should be clear about
their sequence of execution. The simplest way of doing it is by naming files properly. For
example, in this project the Data folder contains the following scripts:

Data/
| ---- c0_parse_data . py
| ---- c1_create_estimation_data . py
| ---- c2_create_control_data . py
+---- README. txt

The README file provides a description of the purpose of the codes in this folder,
while the three scripts provide a clear name and a sequence of operations. In this way, we
can always remember that we should first create the estimation data and then the control,
and not the other way around.

The second type of codes are what I have called Modular. These codes often define the
key logic of the project: utility functions, demand systems, numerical optimizer, estimators,
etc. This type of code has two key characteristics that merits a different structure:
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• Reusable structure: It is composed of components that will be used by many parts
of the code. For example, to avoid repetition and error, we want to define the utility
functions once and then use the definition whenever appropriate.

• Exploration: Part of research is that we are not sure on what will be the best way
of doing things. This requires a project structure that is more flexible, where we can
change one component and propagate automatically to all our code (e.g, changing
the utility function) and where we can change the orders of operations easily (e.g,
adding a pre-estimation or a counterfactual exercise).

The preferred structure for this sort of code is modular: one "main" file handles the calls
to each component and a "package" directory encapsulate the different operations coded.
Late on, when you get to the Object Orientation part of the guide, you will see how easy
it is to keep things clean and modular in Python. In the example project of Illanes and
Padi (2019), the (summarized) file structure looks like:

Pro j e c t /
README. txt
i n s t a l l . py
main . py
annuity_model/

README. txt
i n t e g r a t e /

In t eg ra to rEr ro r . py
In t e g r a t o r . py

s imulate /
Consumer . py
SimulatorObject . py

u t i l i t y /
AnnuitySolver . py
MixedSolver . py
PWSolver . py
Ut i l i t yOb j e c t . py

data/
data_creat ion /

c0_parse_data . py
c1_create_estimation_data . py
c2_create_control_data . py
README. txt

docs /
output /
s c r i p t s /

5



In this project,there is always a README.txt file that describes the purpose of codes
within each folder. The install.py script installs all necessary packages and verifies that
all the necessary data are available. This enables portability of the project across sys-
tems and easy installation. The main.py is the key file that handles the calls to all the
code parts. It provides the core-access to all the functions of the project and allows for
exploration and testing. The annuity_model folder is actually a Python module! it in-
clude three submodules each encapsulating specific logic. For example the utility module
includes all functionalities necessary to compute the utility of agents in the model. The
simulate module creates simulated consumers, each of which knows how to compute utili-
ties using the utility module. Finally, integrate encapsulate specific mathematical tools for
numerical integration which are used by the utility module and others. Below the main
package we see that data folder where data is stored, the data_creation folder with our
sequential logic, the output folder to store results and the docs folder where the paper
is written. Finally, scripts includes other scripts that use the annuity_model module but
that require longer execution and specific logic that falls out of the scope of the main.py file.

Hopefully, the usefulness of proper structuring is apparent. The idea is to always code
defensively: be prepared for errors and for you own forgetfulness. A nice principle to
enforce is the DRY (Don’t Repeat Yourself). If you are repeating code over and over, it
should be encapsulated and a good project structure is a necessary condition to do so.

1.5 Key Exercise

By the end of this section you should have an editor with a Python linter enabled. To test
your new skills, migrate an old project or homework to a new folder. Structure properly
according to the principles above and initialize a git repository in the folder. Start a debug
branch, switch branch, and edit the code. Then return to the main branch and merge the
debug branch.

2 Python Basics
Teaching how to code properly in any language is a difficult task. For this section we
recommend that you read and work through chapters 1 to 40 of PHW. Although it sounds
like a lot, it is actually a fast tutorial through all the basics of Python. We recommend
that you actually type and try most (if not all) the scripts presented in PHW.

2.1 Key Exercise: A Scaffolding Script

Now that you know the basics, you are ready to create a simple scaffolding script. This
script will be used to create new empty projects in your projects folder. To do so we will
require some useful built-in libraries of Python 3 which PHW doesn’t cover. In particular,
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we will use the argparse module to parse inputs provided to the script and automatically
create a help text. We will use the datetime module to get the current date, and the os
module to manage the directory. Finally, we will use the subprocess library to initialize a
git repository in the newly created folder. How you decide to go about creating the script
is up to you, but it should satisfy the following requirements

1. The script should be executable from the command line (hint: check "chmod +x" in
linux/mac).

2. The script should take two arguments: a full project title (title) and a short name
(codename).

3. Using these arguments, the script should:

(a) Check that a folder named as the codename doesn’t exists, and if it does abort
the operation.

(b) If the folder doesn’t exist, create it together with a code, docs and data folder
within it (hint: check os.path).

(c) Create a README file in folder that contains the title of the project, the date
of creation and a line for inserting the idea behind the project.

(d) (optional) It should open the README in a text editor such that the user can
fill the idea section comfortably.

(e) Initialize a git repository in the folder and commit the current structure. (hint:
it is easier to use subprocess.run with the shell=True argument)

4. The script should also contains a useful help message regarding the purpose of the
script, displayed by running "$ ./new_project.py - -help"

For comparison only, we have left an example script in the section 2 resources which
does the things above. Finally, if you have managed to make this script: make it your own.
For example, you can add options to include coauthors, to initialize remote git repositories,
to establish links with remote servers, etc.

3 Math in Python
Many economists are trained to do computational mathematics in Matlab. This chapter
is dedicated to importing the tools you might be familiar with in Matlab to Python.

The two main libraries used in Python for computational mathematics and statistics
are: NumPy and SciPy. The first contains the core functions, such as multidimensional
arrays (or matrices), standard matrix algebra and operations, while the second is provides
more advanced linear algebra, numerical integration and statistics. The following tutorials
discuss the basics of NumPy:
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1. Basic NumPy tutorial

2. Numpy for Matlab users

Here are some things you should look out for in NumPy and get familiar with:

1. The convention is to import NumPy as np (i.e import numpy as np). So you will
often see python code that just uses np without showing the import row. For example
something like np.sum(x) is using the sum function on some object x.

2. NumPy arrays are by default row-oriented (which is the C standard, instead of the
column-orientation Fortran standard used by Matlab). This implies two important
things regarding coding in NumPy versus Matlab. First, one-dimensional arrays
are by default row-vectors. Second, operation that traverse an array row-wise are
sometimes more efficient, as elements are stored in memory in row-order.

3. NumPy arrays are multidimensional. Particularly, one dimensional arrays have no
second dimension to transpose on. To test this, create a random vector (x = np.random.rand(500))
and check its transposed shape (x.T.shape). You should see that it is still a row
vector despite the transposition. The most efficient solution is to rewrite your algebra
such that row vectors are in fact what you need. Alternatively, reshape to a column
vector: x.reshape(-1, 1).

4. As in Matlab, NumPy matrix operations benefit from powerful boolean and integer
indexing. Often, messy and expensive loops over matrix rows and columns can be
replaced by proper indexing.

5. NumPy offers automatic broadcasting capabilities which makes it’s usage very effi-
cient. This implies that if you want to add an (N , ) row-vector v to each row of an
(M ,N) matrix X, it suffices to write X + v. NumPy, will automatically broadcast
v to the appropriate shape for the summation.

6. Importantly, by this point you should be familiar with the 0-based indexing of Python
(instead of the 1-based indexing of Matlab). Numpy arrays are no different and 0
indicates the first element. Additionally, indexing in numpy (and python in general)
can go backwards such that x[-2] fetches the penultimate element in the array x.

7. Make use of "out" arguments to gain efficiency. Most algebraic operations need to
create new objects when returning results. This often comes at significant cost be-
cause the system needs to allocate the additional memory for this new result object.
One very common example is the multiplication of two (N ,N) matrices x and y and
their storage back in x, i.e x = x.dot(y) or x = np.matmul(x, y) or x = x @ y.2

2The "at" (@) notation for matrix multiplication was only added starting Python 3.5. It is still common
to find people using older versions of Python 3, so it might be good idea to avoid the "@" for the time being.
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When doing this product, NumPy will first create a new matrix to store the results
of the product in, and then copy the results back to x. This is clearly inefficient, as
dot products can be computed in-place as np.matmul(x,y, out=x). This saves the
system the creation of temporary storage for the results which can sometimes make
the difference between having the memory to execute an operation or not.

8. Make use of numpy’s np.any and np.all functions for checking the truth status
of arrays properly. For example, the two following examples check whether the
equal-shaped vector x and y are equal, but the second is significantly more efficient:
1)assert np.max(np.abs(x-y)) == 0; 2) assert np.all(x == y).

9. For more flavors of matrix multiplication check this question on Stack overflow. For
more tips on efficient use of copying and broadcasting check this post.

10. Despite being dynamically typed, NumPy arrays have explicit datatypes. When
memory is a constraint, setting the optimal data type can reduce memory usage
significantly.

The SciPy library contains more advanced mathematical operation. In section 7 we will
focus specifically on the numerical optimization methods included in SciPy. In addition
to optimization, SciPy includes numerical integration, interpolation, and linear algebra
capabilities among others. We recommend that you have a brief overview of the numerical
integration, statistics and linear algebra tutorials:

1. Numerical Integration

2. Statistics

3. Linear Algebra

Here are some things you should look out for in SciPy and get familiar with:

1. Many of the linear algebra routines (eigen values, ranks, etc.) of SciPy are directly
available in NumPy under np.linalg.

2. Be careful with the definition of particular distributions in the statistics packages.
They are sometimes transformations of the expression used in Economics and require
slight adjustments.

3. Numerical integration in SciPy is basic but efficient. For more advanced usage see
QuadPy.

4. Scipy gives access to low-level BLAS function that given finer control of linear algebra
function (link). With few exceptions, using these function directly is an overkill
but experienced programmers might find it comforting to control all the parameters
involved.
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3.1 Key Exercise: Logit choice probabilities

We will now start to build towards the end goal of this coding tutorial: a functional and
useful individual-level Logit demand estimation module. We will begin by creating the key
functions that computes the likelihood of a series of choices given a set of covariates and
parameters. We recommend that you begin by reviewing the chapter on Logit demand in
Kenneth Train’s book Discrete Choice Method with Simulation (link).

Begin by creating a new project called coding_tutorial using the script of the previous
section. In the codes directory create a new folder called logit_demand and inside of it
create an empty script called logit_demand.py and one called test.py. Before starting,
here is an overview of what you will create. Within logit_demand.py you will create two
functions:

1. choice_probability(I, X, beta). The arguments for this function are first a vec-
tor of consumer indexes (I), second a matrix of consumer-choice attributes (X),
and the coefficient vector (β). The vector I has a length equal to the number of
individual-products in the data, while X should have the same number of rows as
the length of I and the same number of columns as the length of β. This function
should return a vector of the same shape as I which contains the probability with
which each choice is made, assuming the outside option is normalized to 0 and not
included among the choices.

2. loglikelihood(Y, I, X, beta). This function should use the previous function to
compute the negative log-likelihood of a binary-vector of choices Y . The function
should return a scalar. We need to compute the negative of the log-likelihood because
later we will aim to minimize this objective.

In the test.py you will create a simulation data set to test your script with.
Now, to the actual coding. We recommend that throughout you keep an IPython shell

open to test your code as you make it. As always, this exercise involves a lot of researching
functions on your own. All should be available within NumPy, Scipy or be part of the
Python core. If they are not, then you are expected to code them yourself.

1. Begin by creating the two functions in logit_demand.py. Define them with empty
bodies, returning some arbitrary value.

2. In test.py import the functions from logit_demand.py and create the following

(a) Define at the top, following the imports and the definition of the script (Always
start scripts with a multiline string describing what the script does), a settings
section. There, define the following: number of individual N=1000; number of
attributes M=6; range of products for each consumer C=[3,6]; total number of
products TC=100. Additionally, fix the random number generator seed at this
point.
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(b) Following the settings section, create an increasing sequence of N integers indi-
cating consumers ids. We will refer to this vector as consumers

(c) Create a vector of M − 1 elements drawn independently and uniformly from
[−50, 50], which we will call locs. Additionally, draw a vector of M − 1 inde-
pendent log-normals with standard deviation equal to 5, called stds. Draw TC
samples out of a joint-normal of M − 1 of mean locs and variance matrix of
diagonal equal to stds squared and cross-correlations equal to zero. We will re-
fer to this matrix as the product attributes p_attrs. Draw a log-normal vector
of mean 5 and standard deviation 3 and size TC. This is the price vector p.
Draw a uniform binary matrix of size N × b(M − 1)/2c, which we will call the
consumer characteristics c_attrs.

(d) Using efficient indexing operations, for each consumer draw a number of of-
fered products c uniformly from C, then draw uniformly without replacement c
products out of the list of TC product indexes. Use the row draws to expand
the consumers to match the consumers-products size; call this new variable I
(note that by construction different consumers might have different number of
products). Use the product draws of each consumer to select the appropriate
rows out of p_attrs and the p variables (the row index drawn from p_attrs
and p should match). Concatenate these two array to form the matrix X of
offer attributes, with the first column being the prices. Expand the c_attrs to
match the size of X such that each consumer’s row in c_attrs is matched with
it’s offer attributes in X. Replace the last b(M − 1)/2c columns of X with their
Hadamard (element-wise) product with c_attrs. This concludes the creation
of X, which now contains plenty of product- and individual-level variation.

(e) Draw a vector β from your preferred distribution. The first element of β should
be negative as it correspond to the consumers’ preferences for price.

(f) To construct the the choice of each consumer, create a score S = Xβ and sample
a product for each consumer, with a probability proportional to its score. Form
a binary vector Y of choices, where each row is either a zero if a product is
chosen and 0 otherwise. Each consumer should have one, and only one, choice.

(g) Now proceed to implement the functions in logit_demand.py. Implement them
in the order shown above and test them after each execution. Train’s chapter
provide further guidance on how to compute the choice probabilities and log-
likelihoods. Some hints:

• The logit function includes exponentials which grow very quickly and due
to the computer’s limited precision, are fairly unstable. This often leads
to infinities or to products being predicted to be chosen with probability 1
or 0. A workaround is to normalize each consumer’s product utilities with
respect to the largest one. Using indexing and broadcasting, that can be
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done quite efficiently. If you chose to do so, remember to also adjust the
normalized outside option utility.

• The logit function requires deviding the exponentiated utility of each prod-
uct by the sum of all products offered to the consumer. In a dataset where
different consumers have different number of products, this can be tricky.
Looping over consumer will result in a very slow code as direct loops in
Python are expensive. One, of many, efficient way around this is to use
a cummulative sum over the entire data, and then use the consumer in-
dex vector I to fetch the correct sum. The less challenging route is using
numpy’s bincount function.

• Note that the likelihood function depends only on the probability of the
chosen products.

4 Data Management
One of the nice features of Python is that we can do both numeric optimization and data
processing in a single language. Although it is likely you will resort to Stata for simple data
operations, Python has a great advantage when processing complex datasets and merging
multiple datasets. You will likely find cases where Stata’s single-dataset orientation will
result in painfully long codes and running times. The go-to data management library in
Python right now is Pandas.

We recommend you cover the official Pandas tutorial. Within each section of the
tutorial you will see links to more in depth discussion of subjects. We highly recommend
you review at least the data structures tutorial, the basics tutorial, the merging tutorial
and the group-by tutorial.
Here are some things you should look out for in Pandas and get familiar with:

1. The convention is to import pandas as pd, i.e import pandas as pd. Therefore
you will often see code starting with something like pd.concat([x, y]) without the
import line.

2. Pandas has an important distinction between a DataFrame (2-dimensional) and a
Series (1-dimensional). When you select a column of a DataFrame, you get a Se-
ries which has different attributes and methods. When searching online for specific
functions, be careful to specify whether it is a DataFrame or a Series function.

3. One of Pandas key source of efficiency is it’s ability to return views (which is the
default for most indexing operations). This means that the object returned does not
possess a new address in the memory, but instead consists of pointers to (or a view
of) the original data. This implies that if you are not careful, you might alter the
original data. To try this do the following:
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import numpy as np
import pandas as pd

X = pd.DataFrame(np.random.rand(10, 3), columns=list('abc'))
Y = X.iloc[:3, :]
Y[:] = -1
print(X)

You should first see a warning from Pandas and then see that X was modified.
With few exceptions, if you want to modify a DataFrame do it on the original using
indexing. If you instead want a copy, be explicit and use the DataFrame.copy()
method.

4. Pandas DataFrames always have at least one row index. Indices are tricky but pow-
erful ways to select variables. For example, suppose we have two dataframes, one
containing consumers, states and income (called df), and the other containing state
and taxes (called tax.) The following are two ways of computing taxed income, with
the latter using indices.

# First method using merge:
df = df.merge(taxes, on='state')
df['taxed_income'] = df['income'] * df['tax']

# Second method using indexing
taxes.set_index('state', drop=True, inplace=True)
df['taxed_income'] = df['income'] * taxes.reindex(df['state'])['tax'].values

In fact, the indexing method takes a seventh of the time as the merge code!

5. Pandas groupby functions is enormously powerful. If you are familiar with Stata,
groupby combines both the "bysort ...: egen/gen" logic and the "collapse ...,
by(...)" logic. The following example illustrates some particular uses you might
have missed

# Get the households median yearly spending
df['median_spending'] = df.groupby(['household', 'year'])['spending'].transform('median')
# You can even apply fancier custom function
df['normalized_spending'] = df.groupby(['household', 'year'])['spending'].apply(

lambda x: (x - x.mean())/ x.std()
)
# Use agg to apply different operations on different columns and
# even multiple operations on a single columns
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collapsed = df.groupby(['household', 'year'], as_index=False).agg(
{'spending': ['min', 'median', 'max'], 'member': 'nunique'}

)

be careful though: when grouping over columns, the resulting object will have these
columns as an index unless the as_index=False option is set.

6. Memory allocations are often very expensive when dealing with large datasets. To
avoid allocating memory unnecessarily, many of Pandas arguments have an inplace
argument. Using inplace=True can save a lot of computing time and memory and
is highly encouraged when possible. Consider the following example

# == Both of these lines do the same thing ==

# This one creates a new dataframe without the columns
# and then assigns it to df
df = df.drop(['column1', 'column2'], axis=1)
# This one avoids creating a new dataframe
df.drop(['column1', 'column2', axis=1, inplace=True)

7. Pandas also has a nice feature for exporting to latex. Additionally, as column names
can have spaces and latex code in them, you can automate the creation of tables
easily. For example the following code creates the table below

# Create a fake data set
X = pd.DataFrame(np.random.rand(10000, 3), columns=list('abc'))
X['year'] = np.random.randint(2017, 2019, 10000)
# Create the table
tbl = X.groupby(['year']).agg(

{'a': ['min', 'max'],
'b': ['median', 'mean'],
'c': lambda x: np.mean(np.log((x - x.mean())**2))}

)
# Make a nice header
tbl.columns = pd.MultiIndex.from_tuples([

('Column (a)', 'min($x$)'),
('Column (a)', 'max($x$)'),
('Column (b)', 'median($x$)'),
('Column (b)', r'$\bar{x}$'),
('Column (c)', r'$\theta(x)$')])

# save to tex
tbl.to_latex('~/Downloads/tbl.tex', multicolumn=True,

encoding='utf-8', escape=False, float_format='%.03f')
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Resulting table:

Column (a) Column (b) Column (c)
min(x) max(x) median(x) x̄ θ(x)

year

2017 0.0 1.0 0.511 0.505 -3.367
2018 0.0 1.0 0.496 0.497 -3.391

8. Pandas DataFrame are wrappers around NumPy arrays. It is often useful to trans-
forms dataframe to arrays to avoid the Pandas overhead, which can be done simply
by accessing the values attributes of the DataFrame.

9. Pandas has quite a few hidden functions. One that turns out to be quite useful is
one to create unique identifiers for groups (as the egen group function in Stata). To
create unique identifier the easiest way is to do

df['group_id'] = df.groupby(group_cols).grouper.group_info[0]

10. Another useful thing in Pandas is that it can read data from many origins. For
example, pd.read_stata() reads .dta files. Matlab files are more tricky and require
the scipy.io module. Pandas also includes the ability to store and read HDF5 files
which are a very powerful storage format which allows compression, querying and
hierarchical structures. See the IO reference page for more details.

11. As should be clear by now, the tutorials pointed above cover only the surface of
Pandas capabilities. Check the Pandas Cookbook for more tricks.

4.1 Key Exercise: processing data

In this exercise you will process a sample data set created for this exercise. You will start
by following a sequential pattern of codes to clean-up and prepare the data for it’s usage
in the logit code.

In the resource folder for chapter 4 you will find three datasets in Stata format:
choices.dta, price_scales.dta and providers.dta. This data corresponds to individual level
data on the demand for cancer treatment from Cuesta, Noton and Vatter (2019). The
data has been scrambled to protect the anonymity of individuals and providers. However,
it has the messiness of true data. The choices data set contains the ids of each consumer,
the year id, the insurer id of each consumer, her/his age, female gender indicator, number
of dependents, and the id of the chosen provider. The providers data set contains a row
for each provider-year together with the average price for cancer treatment as well as a
public-hospital indicator. Finally, the prices data contains for each insurer-year-provider
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the fraction of the average price the insurer has negotiated to pay. You will combine these
datasets to form a more useful dataset to use with the logit demand.

1. Copy the dataset to the Data folder of your coding_tutorial project.

2. Create a new folder in the Codes directory of the logit_demand project called
data_processing. In this folder create a script called c0\_combine.py.

3. In c0_combine.py create a script that merges together the three dataset in to a single
one. Create a single price for each consumer by multiplying the price scale of each
insurer with the average price of each provider.

• Clean-up the data: make sure that no consumers become younger as the years
increase. Correct ages starting from the minimum if necessary. Make sure that
the gender doesn’t change for the patient (transgender and other gender defini-
tions where removed from this extract for simplicity), and correct if necessary.

• Create an automated summary statistics extract to latex: a formatted table
containing the average age of patients at each hospital, the average and median
payment at each hospital and the market share of each hospital. For each year,
create a table containing the average number of cases, average price paid and
the share of demand going to public hospitals. The outcome should be stored
in the Output folder of the project.

• Store the resulting cleaned data set using an HDF5 format, compressed at level
2.

4. Create a new script called c1_expand.py. In this script, use the data you just
cleaned and expand the choice sets of each consumer. To do so, use the insurer of
each consumer and the choices of all patients in that insurer. If a provider was never
selected in a given year by any consumer in a given insurer, do not include it in the
choice set of consumers in that insurer. Create a column that for each consumer-
hospital-year indicates whether the age of the patient is above or below the median
age of patients of the given hospital in the previous year. Drop the first year. Store
the resulting panel in the same HDF5 storage as before in a different key.

5. In the test.py script created in the previous section create a new setting called
use_data such that if it is set to true, the code will load the actual data and use that
to test the logit module. Otherwise, it should run the simulation code created in the
previous section.

6. Add to test.py the lines necessary to transform the expanded data into the format
used by the logit code and test it.
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5 Object Orientation
The same way functions allow us to avoid repetition and encapsulate sequential logic, ob-
jects allow us to encapsulate groups of functions into classes that share common purposes.
This can be enormously useful for programming in research project because it creates a
natural organization of codes, and allows reusing logic across projects. As an introduction
to object orientation, please read chapters 40 to 44 in Python the Hard Way. We also
recommend that you read the second chapter of Data Structure and Algorithms in Python
by Goodrich, Tamassia and Goldwasser (found in the resources folder) which provides more
depth about design patterns and method overloading.

Objects and inheritance are powerful tools that can make the difference between writing
a horrible spaghetti code that will take you years to debug, or writing one that can teach you
something new about what you are researching. There is a lot of creativity and ingenuity
in designing code, and there is no single right way. If you search around, you will find
many design patterns that are adapted to different situations, and it will be up to you to
choose or make the one that fits your problem the best. Here are a few pointers we have
found to be useful in the context of programming in economics:

1. Make your code more abstract than your model.

• It is likely that your model will change as your research progresses, and you
want to make your code to adapt as easily as possible. One way to do so is to
use configuration files and inheritance properly.

• For example, suppose you are working on a model of spatial competition among
rideshare drivers. You might be tempted to create separate objects for full-time
and part-time drivers if your model treats them differently. However, it might be
significantly more robust to first create a "Driver" class which establishes all the
common methods (e.g, utility function, optimal location finder) and attributes
(e.g, car make, years of experience, home location). After this, if needed, you can
create a Part-time class that inherits from Driver all the methods and overloads
anything that requires adjustment. This way, if you change your utility function
down the road, there is a single change to be made in the Driver class which
will propagate to all the types of drivers.

2. Leverage Factory design patterns.

• We are often interested in simulating agents based on data or a list of charac-
teristics. Factory classes can be useful for creating multiple instances of agent
objects based on data in an organized fashion.

• In the rideshare example above, suppose that you have data on the car make, ex-
perience and home location of each driver. If you want to simulate the behavior
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of the drivers using your code, you can load the data and iterate on the rows to
create instances of the Driver class to form a collection and operate on them. A
factory class would encapsulate this logic providing two important advantages:
i) all scripts creating drivers from data will use the same code such that changes
will have to be coded once; ii) testing the creation of drivers becomes a matter
of testing a single class instead of multiple scripts.

3. Use Python’s magic methods to make your code more readable and simple.

• Magic methods prescribe the behavior of objects when used in certain ways
that are not direct calls to methods or attributes. For example, when summing
two objects, Python secretly calls their __add__ method. This can turn out
to be quite useful for defining lists of abstract objects or computing attributes
dynamically.

• For example, we can set the __str__ method of the Driver class such that when
we execute print(driver) we get useful information about the driver. A more
advanced usage could be to make the Drivers factory class an iterator by setting
the __iter__, __len__, __next__ and __getitem__ such that we can operate
on a set of drivers as if they were a list.

4. Use configuration files and __getattr__ to control global configuration of the project.

• It is common for economic models to have global assumptions held fixed. It
seems ideal to have these assumptions available throughout the code but have
a single place to modify them. Even better, you might want to create multiple
instances of your code with different specifications of these assumption. Having
the assumptions directly coded in a parent class will accomplish the first but not
the second. Configuration files makes it easy to have a single file where all global
assumptions are specified. Moreover, using the magic method __getattr__
makes it easy to add new assumption without altering the code. See this post
for more details on how to setup and use configuration files. See this post for
more on dynamic attributes in classes.

5.1 Key Exercise: Logit Class

In this exercise you will convert your logit demand estimation code into a class and extend
it. The idea is to leverage the class as interface in which the data is shared instead of being
copied over function calls. Proceed by doing the following

1. Move your test.py file out of the logit_demand folder and rename it as main.py.
Add an empty __init__.py file to the logit_demand folder to convert it to a module.
Rename logit_demand.py to LogitDemand.py. Adjust the imports in the main.py
folder.
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2. Within LogitDemand.py create a class called LogitDemand and set the functions your
have previously coded as methods. Create an initializer that accepts a DataFrame
containing an expanded panel of choices (as your cleaned data) and extract the
X, I and Y matrices as NumPy arrays. Modify your choice_probability and
loglikelihood method to use the data shared in the class.3

3. Add a method called plot_fit(self, beta). This method should take a guess of
the coefficient parameter β and create a plot of the distribution of the logit choice
probability of each effective choice in the data. To do the plot explore the libraries
matplotlib and seaborn. The plot should be automatically saved in the output folder.

4. Create a configuration file within the code folder next to the main.py script. In this
configuration file define the default name for storing the fit plot together with two
boolean options: female_only and under_65. Adjust your __init__ method to read
the configuration and keep only females if female_only is set to true, and keep only
individuals under 65 if under_65 is set to true.

5. Modify the main.py to load the data, simulate some β, evaluate the loglikelihood at
that point and then plot the fit.

6 Data Structures and Algorithms
In this very ambitious chapter we will attempt to guide you towards learning the basics of a
very large and important part of a computer science major. We will be using the book Data
Structure and Algorithms in Python (DSAp henceforth) by Goodrich et al. (found in the
resources folder). We will focus on only a few chapters here, but we encourage the motivated
reader to dig further in the book. Importantly, because we will be jumping chapters, it is
likely that you will find references to things in the book you haven’t encountered so far.

6.1 Complexity Analysis

Analyzing the complexity of code is very important for many projects and something that is
done in a very unsystematic manner in economics in general. Many methodological papers
in economics do a meager job of providing accurate complexity analysis that can be used
to judge their usability and compare them to alternatives. To learn more on how computer
scientists evaluate the complexity of code, we suggest you read chapter 3 of DSAp.

6.2 Algorithms: recursion, sorting and selecting

With complexity in mind, the importance of designing proper algorithms for certain tasks
becomes apparent. For example, in the analysis of dynamic games in Industrial Organiza-

3hint: the signature of the methods should be as choice_probability(self, beta).
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tion we currently face many computational challenges where the complexity of algorithms
impedes us from applying the methods to interesting problems. These sorts of problems
are part of the history of algorithm design and the evolution of empirical methods. Read
chapter 4 of DSAp to find out more on the use of recursions in algorithms and their impact
on complexity. Read chapter 12 of DSAp to learn more about sorting and searching, which
are classic example of the impact that more efficient algorithms can have on usability, and
how sometimes "best" is not a uniquely defined concept in algorithms.

6.3 Data structures

The choice of algorithm often depends on the structure of the data. Therefore, the way
we organize data in a code can have important consequences on the complexity of the
algorithms we write and the overall running time. To learn more about the importance of
data structures we suggest you read chapters 5 and 8 of DSAp.

6.4 Key Exercise: Grid Search Optimization

Using your new knowledge of algorithms and data structures, you will now make the first
step towards making your logit demand usable. In particular, you will implement a grid
search optimizer. How you design the grid search is up to you, but the overall guidelines
are:

1. Add a method to the LogitDemand class called grid_estimate(self, min_beta, max_beta, points)
which takes an two vectors min_beta and max_beta which mark the highest and lower
boundary of the grid, and points denotes the maximum number of points to test.

2. Test the code by implementing an additional method to create "true" logit demand
choices given some parameter value and see whether your grid search algorithm gets
close.

3. Evaluate the complexity of your code. Search online for the complexity of optimiza-
tion algorithms such as the Simplex method or Newton’s Method.

4. Create an new class called TimeTester that initializes LogitDemand objects given
a data set. Add a method called run_test(self, points, min_size, max_size)
which draws points growing linearly between min_size and max_size. These points
will be the size of the grid to search over. Holding a simulation value of β fixed, for
each of these points run your grid search and time the execution. Plot the size-
time curve of your algorithm and compare to your assessment of your algorithm’s
complexity.

Some tips for the implementation

1. Limit the data to some small sub sample.
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2. Start by searching in a single dimension and applying lessons from DSAp on search
algorithms.

3. Experiment with the starting point in the grid.

4. For improved performance, add a method computing the analytic gradient of the
loglikelihood function. Use that information to determine the direction of movement
more efficiently.

7 Numerical Optimization
Despite your best efforts, it is unlikely that your grid search method is particularly efficient.
Thankfully, many researchers have dedicated their careers to developing good numerical
optimization algorithms. For a quick guide to using SciPy for optimization we recommend
that you read these scipy lecture notes.

It is often when doing numerical optimization that we become conscious of the efficiency
of our code. Knowing where to dig for extra speed is particularly important, which is what
profilers are for. To learn more about profiling and how to optimize code read these scipy
lecture notes. Additionally, Snakeviz provides a nice GUI to Python’s profiler.

Finally, a common source of code inefficiency is due to poor memory management. To
learn more about how the computer’s memory is structured and how garbage collection
works in languages that dynamically allocate memory (like Python), read chapter 15 of
DSAp.

7.1 Key Exercise: Maximum Log-likelihood

In this exercise you will finally implement an efficient optimizer for the loglikelihood and
obtain reliable estimates of the demand preferences. As by now you are more experienced
in Python and programming, we will provide only rough guidance on the implementation
and leave the rest to you.

• Add a method called fit. This method should be called from the main.py with a
starting point for the optimization and return the demand estimates which maximize
the likelihood of the observed choices.

• Your new method should be flexible enough to run with and without a negativity
constraint on the price coefficient.

• Your new method should be flexible enough to switch between optimizer easily, and
run with and without gradient information.
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• Compare the running time and accuracy of different constrained and unconstrained
optimizers. Take the opportunity to test tuning parameters such as step-sizes and
tolerances to see their effect on results.

8 Parallel Computing
Most modern systems, and particularly research clusters, come equipped with multiple
processors. However, all that we have coded here so far has been reliant on a single pro-
cessor.4 Hopefully, we could use the additional resources our computers have to improve
the performance of our code. Whether we can do it or not will depend largely on the type
of problem we are trying to solve.

Parallel computing is a large field on it’s own which we wont attempt to cover. We
will instead discuss only the very basics that are often used in our line of work. We refer
the interested reader that wishes to learn more formally about these subjects to one of
the many books on the subject or these lecture notes from the University of Illinois on
Designing and Building Applications for Extreme Scale Systems.

Sadly, to our knowledge, there is no single good tutorial to parallel computing in Python
that covers all the subjects that you should be aware of. Instead, we recommend you review
all of the following:

• This tutorial discusses the very basics of the multiprocessing library.

• This one discusses the usage of queues and subprocess to tackle parallel computing
problems.

• This one discusses the distinctions between concurrent and parallel programming.

• This one delves more on the differences between multithreading and multiprocessing.

• This one discusses more about the Python GIL.

Here are some things you should keep mind when thinking about parallelizing code:

• Not all code can be parallelized. In effect, many things we routinely do in economics
can not be parallelized because each round of iteration depends on the previous
round’s results. For example, you can not parallelize the iterations of your maximum
likelihood estimator because the best guess for the next value of β depends on the
previous value of the loglikelihood. If you were to create multiple processes to run
different iterations on different processors, each processor would have to wait for the
other one to finish.

4At least explicitly, because NumPy will automatically parallelize some algebraic operations in systems
with the capability to do so.
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• Parallelizing has an overhead cost due to the creation of new instances and the com-
munication across processes. This creates a threshold for the complexity of processes
to parallelize, under which the overhead cost is higher than the benefit of parallelizing
the code. Therefore, parallelizing a sequence of short tasks might results in slower
rather than faster results.

• By default Python’s multiprocessing is a shared-memory parallelization scheme. This
means two important things: first, you can not spawn processes across multiple nodes
in a cluster; second, the processes you run in parallel share memory and therefore
each eats into the resources of the others. This implies that often parallelizing code
will increase the memory usage of your code. This also means that if your code is
memory-constrained (i.e using almost all of the RAM available), than you wont be
able to parallelize it effectively. There are, however, ways around these restrictions
using the multiprocessing library differently or using MPI.

• Creating and destroying parallel processes has a cost. If your code has sections that
can be parallelized and sections that can not, you can use the multiprocessing Pool
class to keep alive a series of parallel processes and use them only when needed. If
doing so, be very careful to close the pools that you are not using before spawning
new ones.

• Python’s multiprocessing Pool class has a hard time parallelizing class methods. A
common workaround is to declare an auxiliary function outside of the class. See this
question on Stack Overflow for more details.

8.1 Key Exercise: Bootstrapped Standard Errors

In this exercise you will use parallel computing to compute standard errors via bootstrapped
simulations. If you are unfamiliar with the bootstrap and its use for computing standard
errors, we suggest reading this review article by Joel Horowitz.

Given that you have designed your logit estimator in object orientation, bootstrapping
standard errors is very simple:

1. Add a _bootstrap_stderr(self) to your method which should be called by your
fit method after convergence is achieved.5 This class should handle the computation
of standard errors via simulation in parallel.

2. Add a configuration field to your configuration file that controls the default number
of bootstrap draws to use and the sample size to draw.

5Note that the method name starts with an underscore. This is a convention for private methods, which
should only be called within the same class or it’s subclasses, but not in the public scope. This logic comes
from the Desgin by Contract approach to software design.
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3. Modify the output of your fit method to automatically print a result table with the
point estimates and standard errors.

Some tips:

1. Create an auxiliary function outside of your class but within the same script to handle
the multiprocessing calls.

2. Use Pool.map and the with clause for a simple parallelization scheme.

3. Control the chunksize parameter of map for added performance.

4. Do not spawn more processes than processors; you will be paying the overhead with-
out any of the benefits.

9 Commenting, Debugging, Testing and Final Thoughts
You now have a fully functional logit demand estimator. Although some things were added
just for pedagogical purposes (like the configuration file), the class is mostly portable and
could be used in any project that has individual-level logit demand. However, it might be a
year until you have to use this code again and by then you might have completely forgotten
how to use the class. In general, when programming large projects, it is likely you and
your coauthors will forget what things do. That’s why commenting and code styling is so
important!

Thankfully, styling is not all arbitrary. The Python community has standardized rules
about how your code should look which are known as the PEP8 standard. This is a partic-
ularly nice thing about Python, which means that if you dig into the source code of libraries
such as Pandas or NumPy, things will look mostly familiar in organization. However, the
way functions are commented (known as docstrings) varies quite a bit, as this post on
Stack Overflows details. Whatever pattern you choose to follow, stick to it and document
every method you write. A nice thing about modern coding editors is that they make it
easy to stick to styling and commenting styles. Install a flake8 linter in your editor to
automatically detect styling errors (vim, sublime, atom) and a automatic PEP8 corrector
(sublime, atom, vim). Finally, add automatic snippet support to your editor such that
function declarations will be automatically created with docstrings (atom, sublime, vim).

It is estimated that about half of the time programmers work is spent on debugging
(see this article for references). Therefore, improving the way you debug code and detect
errors can make significant differences in the time spent coding. One tool frequently used
by programmers is unit testing. Unit tests are a series of checks designed to test the in-
tegrity of pieces of codes, such that you are always aware of what is working and what
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isn’t. One case where this is particularly helpful is if you accidentally brake a functionality
while working on another. Without testing, these sorts of errors can remain hidden for a
long time, making finding the source of the mistake very challenging. We recommend that
you read this post to learn more about unit testing in Python and complement with this
short guide on testing guides and alternative tools for testing.

Finally, making the execution of your code informative can make a big difference in
the time spent debugging. Using the python logging module you can setup different lev-
els of information to be displayed depending if you are debugging a new piece of code or
running one that you already know to work. Creating custom exception classes is done
very easily by extending the Exception class. This is a very common approach to control
the informativeness of your errors and distinguish exceptions handled by your code form
those thrown by other libraries. We recommend that you code to fail frequently and loudly,
meaning that your code should contain several clauses that test inputs, intermediary steps,
and output, and throw exceptions that are abundant in information. The Python error
traceback is usually highly informative and will help you locate the origin of mistakes easily.

Some final things to keep in mind regarding styling, debugging and testing:

• It is normal for codes to be more than 50% comments. It might seems like a lot
of extra work, but it will save you a lot of time down the road. Make the effort to
maintain docstrings as you modify functions and make your coauthors comply with
styling standards.

• Write unit tests after you complete significant chunks of your code. For example, if
you just finished the code that estimates your demand system and about to move
towards a structural simulation, write a unit test for your demand estimation. If
results start to look odd down the road, you will appreciate the certainty of knowing
that your demand estimation routine hasn’t been damaged by some odd mistake.

• When you have some unit tests written, you can automate your editor to run the tests
every time you start working on your project. This way you will know immediately
what is broken when you start working.

• Use the logging class instead of prints to provide runtime information. Limit prints
to things like output table and communications with the user. Define the logging
format and level in the main.py file, not at the class level. You can also use the
logging system to automatically store a log file during execution.

• Create custom exceptions that are aware of your custom definitions. For example, if
you defined a __str__ representation of your class, make your exceptions aware of
that to present useful information to users.
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• When confronting a bug in an external library, do not be scared from digging into
the source code. The styling uniformity makes most source code in Python relatively
easy to read and it often contains more information not provided in the reference
page.

• When dealing with exceptions using Pandas DataFrames, remember to print the data
types of your columns, as they can often lead to conflicts.

• Finally, a lot of what you have implemented in this guide could have been pre-
packaged more generically. The Statsmodels package tries to do exactly that by
providing a general class of Maximum Likelihood models, which you can extend by
subclassing and overloading key methods. By doing so, your classes will automatically
have standard error computation and output tables. Statsmodels also provides nice
linear regressions capabilities, much in the flavor of R. However, Statsmodels is still
a young package and many things (like the GMM class) are still work in progress.
Hopefully, some of you will contribute to make this package better by fixing bugs and
suggesting new methods (github makes contributing to these sorts of projects quite
easy).

9.1 Key Exercise: Unit Testing The Logit Class

In this final exercise you will make your logit demand portable and create unit tests to
validate the integrity of your code.

1. Remove your configuration file and turn it’s elements to optional arguments of your
methods. Configuration files are very useful for many purposes but not for portable
tools like an estimator. Adjust your main.py file to account for this new setup.

2. Add docstrings to all your methods detailing their objective and their arguments.

3. Create a unit test for your logit class. Test that your class detects invalid dataframes
containing anything but a single choice for a consumers (or choice-event). Test that
your class detects non-numeric, missing or infinities in the estimation data. Store a
simple "true logit" case and test that your class recovers parameters reasonably close
to the truth (make this as simple and fast as possible). Test that your bootstrap
method is not creating more processes than cpus.

4. Add a testing script next to your main.py script, that runs all the tests you wrote.
Add a documentation script for your library (there are some automatic generators
for this if you commented your class properly).
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