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Motivation

> Quality scores affect our everyday choices

How to design them to maximize welfare?

» Two central mechanisms:

1 Help consumers choose through added information (

2 Affect firms’ incentives to invest in quality (

> Scores can be powerful policy tools, however

No systematic guidance on how to design them
Poor designs can backfire (gaming) ( )
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Overview of the Paper

Q: How to design welfare-maximizing scores for Medicare Advantage (MA)?

Summarize medical and service quality of insurance plans using nine scores (stars)

> Use yearly variation in scoring design between 2009 and 2015 to:
1 Show that design affects demand and supply of health insurance

2 Estimate a model of demand, pricing, and quality investments

- Information asymmetries: consumers’ quality information is severely limited
- Inefficient quality provision: too low on aggregate, distorted by private incentives (

> Develop a general empirical scoring design methodology

Combine computational methods with insights from information design (
= Model + method deliver a welfare-improving design for MA
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Reward more improvements in quality dimensions consumers’ care about (T efficiency T info)
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Preview of Results

> New design increases total welfare by 3.7 monthly premiums per consumer/year

Uses four scores: four stars with discrete increments

One-star pools low and medium quality (| info) others partition high quality (T info)
Consumers avoid one-star plans, firms respond by increasing investments (T quality)

Reward more improvements in quality dimensions consumers’ care about (T efficiency T info)

= Consumers make more informed choices over higher quality products

> Delivers broad lessons about scoring policies

Scores are powerful mechanisms by which to regulate quality
Coarse, simple, scores can outperform full-information outcomes at small informational losses



Outline

1 Institutional Details and Data

Graphical representation of the scoring design problem

2 Model, Identification, and Estimates

Measurement of the frictions addressed by the scores

3 Scoring Design

Mechanisms by which optimal scores improve welfare



Three Facts About Medicare Advantage

1 National regulated private health insurance market

All 65 million Medicare-eligible individuals can opt into MA, about half do
> Trade-off: greater access vs. better coverage
Generous premium subsidies, risk-adjustments for insurers

2 Highly concentrated: 90% of average county enrollment controlled by 2 firms

> 4 firms account for 70% of national MA enrollment

3 Quality heterogeneity affects mortality, costs billions in subsidies (

> Challenging to assess if not for the quality scores



The MA Star Ratings 523

> Summarize medical and service quality in 1-to-5 stars, in half-star increments
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Scoring Design (simplified) 6123

1 Measure plan’s performance over five categories of quality
1 Medical Outcomes
2 Intermediate Medical Outcomes (chronic conditions)
3 Access to Care
4 Patient Experience

6]

Process Measures (preventive, diagnostic care)

2 Give a score of 1-5 to each plan and each category

3 Show consumers the rounded weighted average



Graphical Representation

> Design: slope and location of hyper-planes
> Slope = Weights, Location = Cutoffs

In two dimensions design is just lines —

process quality

Q: Which lines to draw and how many?

> Scores reveal quality regions, not value

outcome quality
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Data and Descriptive Evidence 8|23
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Data and Descriptive Evidence 8 |23

20.0%

1 Scoring rules

2 Dataon all plans 15.0%

3 Enrollment data
10.0%
> Individual-level representative panel

> 46,833 enrollment choices 5.0%

> Linked claims

estimated score fixed-effect (a()

. . 0.0%
> Consumers prefer higher-scoring plans 25 3.0 35 4.0 45 5.0
star rating



Taking Stock: The Designer’s Toolkit 9|23
> Plentiful design variation reveals that scores:

1 Shift demand across products
2 Affect firms’ quality investments

> To extrapolate to new designs, we must recover the social cost and value of quality
> Costs: from variation in scoring incentives to invest
> Value: from variation in WTP for scores
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1 Institutional Details and Data

2 Model, Identification, and Estimates

3 Scoring Design



Model

Designer Insurers Nature Insurers Consumers
Scoring ¢ Investments x  Quality g ~ F(-|x) Prices p D(p,¢(q),¢)
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Model

Scoring ¢ Investments x g~ F(lx) Prices p D(p.¢(q),¢)
t

1 2 3 4
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wj = aiPj + Pibj +EV (g ¢I+ Vzj + &  + g
SN—— N—— N’ N—— N—— N——
premium  coverage quality unobs. ~T1EV

Obs.
attributes  preferences
» Choose among MA plans — or — Medicare + Part D (prescription drug coverage)
> Heterogeneity in WTP for quality (y/«a;) = scoring granularity

> Subjective Bayesian non-parametric priors = scoring cutoffs and weights



Model

Scoring ¢ Investments x g~ F(lx) Prices p D(p.¢(q),¢)
f f ; f 1
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> Multiproduct oligopolistic price competition with risk adjustment
> Quality affects insurance cost:

Better hospitals increase claim prices (T C), preventive care reduces hospitalization (| C)



Model

Scoring ¢

Investments x q ~ F(x) Prices p D(p,¢(q),¢)

1

: : : b t
2 3 4
A

max [ Elns(ay a0 - L)
XfG]R —
investment cost

expected insurance profit

> Choose investment for each product-category

> Rational expectations about rivals’ investments based on market observables (

> Heterogenous convex investment costs = equilibrium quality effects



Model

Scoring ¢ Investments x g~ F(lx) Prices p D(p.¢(q),¢)

f ; i Pt

2 3 4
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A

> No optimality imposed on designer’s experimentation
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Identification

> Supply model identified from profit optimality conditions

> Revealed preferences identify consumers’ WTP for scores
Cannot tell if WTP comes from beliefs about quality or preferences

Example: only readmission risk quality (scalar)

- Consumers WTP $100 for plan to have 4 instead of 3 stars, all else equal
- A&E(g) = 1% and y = $100 or AE(q) = 5% and y = $20?

> Intuition: if consumers understand design, posterior beliefs are bounded
Bounds on beliefs + WTP = bounds on preferences

- Consumers knows that ¥(q) =3 < q € [0.8%,1%) and ¥(q) =4 < g <0,0.3%)
- Therefore AE(q) € (0.5%,1%) == y € (100,200)

= Variation in scoring design generates additional bounds and tightens identification



Key Estimates - Information Assymetry

> Maximum Outcome quality ~ $4,036 in OOP

> Incomplete info lowers surplus by $199.3
(keeping supply fixed)

> Two sources of information asymmetry:
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> Incomplete info lowers surplus by $199.3
(keeping supply fixed)

> Two sources of information asymmetry:
1 Within-scores:
Best 4-star worth $367.8 more than worst
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Key Estimates - Information Assymetry

> Maximum Outcome quality ~ $4,036 in OOP

> Incomplete info lowers surplus by $199.3
(keeping supply fixed)

> Two sources of information asymmetry:
1 Within-scores:
Best 4-star worth $367.8 more than worst
2 Across-scores:
22.7% of plans ranked opposite to preferences
= 94.5% of losses come from across-score

quality dimension 2
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Key Estimates - Quality provision

> Avg insurance markup of 10.5%

For top insurers: avg marginal cost is $758
Curto et. al (2019): medical cost is $680

> Median investment = 12% of insurance profits

> Quality is underprovided:
1 On average, dTW/dq € [17.6,84.9] million/contract
2 Less so in more competitive markets (Spencian)
3 Less so in categories with T weight (Design)

plan density
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0.010

o
o
S
®

o
=3
S
>

overprovided
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0.002
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1 Institutional Details and Data

2 Model, Identification, and Estimates

3 Scoring Design



The Designer’s Problem

max  E,[CS(p,q) + Y, Vy(d,4) = 106 (), ) I ()]
pey 7
Consumer
surplus

Insurer
profit

> Subject to equilibrium behavior:

Firms update investments, prices, beliefs about rivals
- Consumers update beliefs given design and realized scores

> Focus on deterministic, monotone, finite designs

Includes MA, school letter grades, food labeling, ...
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Empirical Scoring Design

1 Exploring the space (Y):
Challenge: no optimality conditions to guide us (i is discontinuous)

Solution: divide into smaller, manageable problems

1 1 = polynomial aggregator o cutoffs
2 Choose number of cutoffs, polynomial order of aggregator
3 Problem is now finitely parameterized: solve and iterate

2 Evaluating the welfare value of (TW(1)):
Challenge: state-space for pricing subgame is huge: [0, 1]/

- 1 induces a distribution over state-space, requires costly integration for every guess

Solution: computation in Belief Space ( )

- Drastically reduces dimensionality of state-space and integration costs
= Solve large grid of independent equilibria, identify value of each score as a distribution over grid



Solution: Best Linear Design
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quality index

2 Aggregator: optimal weighting scheme aligned with preferences

3 Limited granularity: use only four scores; three partition higher quality

16 | 23



Decomposing the Design: Pooling at the Bottom 17|23

> Creates demand penalty for under-investment: T quality
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> Creates demand penalty for under-investment: T quality

> Market power over quality (Spence, 1975; Crawford et al., 2019) : firms under-invest even under full info
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Decomposing the Design: Pooling at the Bottom

17 | 23

> Creates demand penalty for under-investment: T quality

> Market power over quality (Spence, 1975; Crawford et al., 2019) : firms under-invest even under full info
> Delegation equivalence (Zapechelnyuk, 2020) : certification <= g% or 0
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Decomposing the Design: Pooling at the Bottom

17 123

> Creates demand penalty for under-investment: T quality

> Market power over quality (Spence, 1975; Crawford et al., 2019) : firms under-invest even under full info

> Delegation equivalence (Zapechelnyuk, 2020) : certification &= g% or 0

> Accounts for 71.8% of welfare gain (certification)

- 57% of contracts would receive <2 star in baseline, only 21% in equilibrium
Serve only 1.9% of consumers

>

Quality is 4% higher in equilibrium, investment nearly triples



Decomposing the Design: Aggregator 18|23

> New weights align with consumer preferences
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Decomposing the Design: Aggregator

> New weights align with consumer preferences

Aggregation produces two problems:

1

Across-scores information asymmetry:

quality dimension 2
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1 Across-scores information asymmetry:

> Eliminated by new weights

quality dimension 2
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> New weights align with consumer preferences

Aggregation produces two problems:

1 Across-scores information asymmetry:

> Eliminated by new weights

2 Multitasking moral hazard
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> New weights align with consumer preferences
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Decomposing the Design: Aggregator 18|23

> New weights align with consumer preferences
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Decomposing the Design: Aggregator

> New weights align with consumer preferences

> Pooling at the bottom + optimal aggregator account for 98.2% of welfare gains
Pooling increases overall investment
> Optimal aggregation improves informativeness and allocative efficiency of investments

= High welfare value from optimal certification



Decomposing the Design: Granularity 1923

> Why only three scores at the top?
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Decomposing the Design: Granularity

> Why only three scores at the top?
> Trade-off: efficiency vs. product variety
> More scores allow more investment actions for firms (delegation equivalence)
More actions allow for more heterogeneity: lower quality at lower prices

> But also more deviations away from efficient production and towards profit maximization



Decomposing the Design: Granularity

> Why only three scores at the top?
> Trade-off: efficiency vs. product variety
> More scores allow more investment actions for firms (delegation equivalence)
More actions allow for more heterogeneity: lower quality at lower prices
> But also more deviations away from efficient production and towards profit maximization

> Granularity governed by:

1 Value: consumers’ heterogeneity in WTP for quality
2 Cost: ability to generate separating choices for firms
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> Holding prices and quality change information:

Products are easier to choose, fewer mistakes

20 |23
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> MA expansion: Consumers select quality that offsets systematic preferences



Welfare
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> Holding quality, change information, and prices:

mmm information

s+ quality
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-5.0%

-10.0%
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MA Share

> New information reveals vertical differentiation across products

> Firms exert market power over prices, capturing surplus

20 |23
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Welfare
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> Total welfare increases by $155.7 per beneficiary/year, firms’ benefit from coordination effect
> Compensating variation of: quality = $90.14 > $70.45 = information

= Quality regulation is key driver of welfare gains
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> Full information allows exercise of market power over quality, reduces welfare

> New scores dominate only because of equilibrium quality effects



Explaining the Differences in Designs

Why is CMS’s design systematically different than the optimal?

1 Strong preferences for quality chronic care (Intermediate) and lower-cost hospitals (Outcome)
Paternalism or dynamic considerations for future subsidized care
Nudging the market with scores is enormously costly:
= Outperformed by a subsidy that generated 8 cents of investments per dollar spent



Explaining the Differences in Designs

Why is CMS’s design systematically different than the optimal?

1 Strong preferences for quality chronic care (Intermediate) and lower-cost hospitals (Outcome)
Paternalism or dynamic considerations for future subsidized care

Nudging the market with scores is enormously costly:
= Outperformed by a subsidy that generated 8 cents of investments per dollar spent

2 CMS might be risk averse to misrepresenting consumers’ preferences
CMS might also believe that consumers are naive (ignorant of policy changes)
> Medicare plays a delicate political and social role, objective might be maxyey minyer TW(Y,y)
= CMS’s design outperforms best (linear) monotone partitional design
Assumptions of the setting are rejected by the data, yet presents credible rationale for status quo
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1 New methodology delivers aggregators that offset multitasking moral hazard

“Gaming” has been documented extensively in nursing homes, energy, schooling
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2 Scores should be designed with quality goals in mind, not only informativeness

Quality promoting initiatives exist alongside scores in healthcare, schooling, electric appliances,...
> Properly designed scores can enhance these efforts; poorly designed ones, counteract

3 Coarse, simple scores can improve welfare at small informational cost

Longstanding concern about ability of consumers to process complex quality data
> Inherent value for simplicity in quality disclosure policies



Conclusions

> Scores are powerful quality regulation policies:

Adapting MA’s design to equilibrium effects increases welfare by $8.8 billion

> Suggests potential for redesigning scores using theory and empirical work

> Challenges policy focus on granularity, (ex-ante) informativeness, cognitive bias considerations
= A simple, well-designed sticker can outperform full information outcomes

> Empirical Scoring Design methodology for disclosure policies

Data-driven solution for an extensive policy problem
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