Quality Disclosure and Regulation: Scoring Design in Medicare Advantage

Benjamin Vatter

MIT

April 30th 2024

- > How to design them to maximize welfare?
- Two central mechanisms:
 - 1 Help consumers choose through added information (Dranove and Jin, 2010)
 - 2 Affect firms' incentives to invest in quality (Barahona et al., 2020)

- > How to design them to maximize welfare?
- Two central mechanisms:
 - 1 Help consumers choose through added information (Dranove and Jin, 2010)
 - 2 Affect firms' incentives to invest in quality (Barahona et al., 2020)
- Scores can be powerful policy tools, however
 - > No systematic guidance on how to design them
 - > Poor designs can backfire (gaming) (Feng Lu, 2012)

Q: How to design welfare-maximizing scores for Medicare Advantage (MA)?

> Summarize medical and service quality of insurance plans using nine scores (stars)

Overview of the Paper

Q: How to design welfare-maximizing scores for Medicare Advantage (MA)?

- > Summarize medical and service quality of insurance plans using nine scores (stars)
- Use yearly variation in scoring design between 2009 and 2015 to:
 - 1 Show that design affects demand and supply of health insurance

Overview of the Paper

Q: How to design welfare-maximizing scores for Medicare Advantage (MA)?

- > Summarize medical and service quality of insurance plans using nine scores (stars)
- Use yearly variation in scoring design between 2009 and 2015 to:
 - 1 Show that design affects demand and supply of health insurance
 - 2 Estimate a model of demand, pricing, and quality investments
 - Information asymmetries: consumers' quality information is severely limited
 - Inefficient quality provision: too low on aggregate, distorted by private incentives (Spence, 1975)

Overview of the Paper

Q: How to design welfare-maximizing scores for Medicare Advantage (MA)?

- > Summarize medical and service quality of insurance plans using nine scores (stars)
- Use yearly variation in scoring design between 2009 and 2015 to:
 - 1 Show that design affects demand and supply of health insurance
 - 2 Estimate a model of demand, pricing, and quality investments
 - Information asymmetries: consumers' quality information is severely limited
 - Inefficient quality provision: too low on aggregate, distorted by private incentives (Spence, 1975)
- Develop a general empirical scoring design methodology
 - Combine computational methods with insights from information design (Kamenica and Gentzkow, 2011)
 - \Rightarrow Model + method deliver a welfare-improving design for MA

Preview of Results

New design increases total welfare by 3.7 monthly premiums per consumer/year

- > Uses four scores: four stars with discrete increments
- > One-star pools low and medium quality (\downarrow info) others partition high quality (\uparrow info)
- Consumers avoid one-star plans, firms respond by increasing investments (
 quality)
- > Reward more improvements in quality dimensions consumers' care about (↑ efficiency ↑ info)

Preview of Results

New design increases total welfare by 3.7 monthly premiums per consumer/year

- > Uses four scores: four stars with discrete increments
- > One-star pools low and medium quality (\downarrow info) others partition high quality (\uparrow info)
- Consumers avoid one-star plans, firms respond by increasing investments (
 quality)
- ⇒ Consumers make more informed choices over higher quality products

Preview of Results

New design increases total welfare by 3.7 monthly premiums per consumer/year

- > Uses four scores: four stars with discrete increments
- > One-star pools low and medium quality (\downarrow info) others partition high quality (\uparrow info)
- Consumers avoid one-star plans, firms respond by increasing investments (
 quality)
- ⇒ Consumers make more informed choices over higher quality products
- Delivers broad lessons about scoring policies
 - Scores are powerful mechanisms by which to regulate quality
 - > Coarse, simple, scores can outperform full-information outcomes at small informational losses

1 Institutional Details and Data

> Graphical representation of the scoring design problem

2 Model, Identification, and Estimates

> Measurement of the frictions addressed by the scores

3 Scoring Design

> Mechanisms by which optimal scores improve welfare

Three Facts About Medicare Advantage

- 1 National regulated private health insurance market
 - > All 65 million Medicare-eligible individuals can opt into MA, about half do
 - > Trade-off: greater access vs. better coverage
 - Generous premium subsidies, risk-adjustments for insurers
- 2 Highly concentrated: 90% of average county enrollment controlled by 2 firms
 - > 4 firms account for 70% of national MA enrollment
- 3 Quality heterogeneity affects mortality, costs billions in subsidies (Abaluck et al., 2021)
 - Challenging to assess if not for the quality scores

The MA Star Ratings

Summarize medical and service quality in 1-to-5 stars, in half-star increments

Scoring Design (simplified)

- 1 Measure plan's performance over five categories of quality
 - 1 Medical Outcomes
 - 2 Intermediate Medical Outcomes (chronic conditions)
 - 3 Access to Care
 - 4 Patient Experience
 - 5 Process Measures (preventive, diagnostic care)
- 2 Give a score of 1-5 to each plan and each category
- 3 Show consumers the rounded weighted average

Graphical Representation

- Design: slope and location of hyper-planes
 - Slope = Weights, Location = Cutoffs
 - $\,>\,$ In two dimensions design is just lines $\longrightarrow\,$
- Q: Which lines to draw and how many?
- Scores reveal quality regions, not value

Data and Descriptive Evidence

- 1 Scoring rules
 - > Hand collected from CMS
 - > Substantial variation in design

Data and Descriptive Evidence

- 1 Scoring rules
- 2 Data on all plans
 - > Premiums, coverage, and benefits
 - > Total investment by contract (2015 only)
 - > Quality: responds to design

Data and Descriptive Evidence

- 1 Scoring rules
- 2 Data on all plans
- 3 Enrollment data
 - > Individual-level representative panel
 - > 46,833 enrollment choices
 - > Linked claims
 - > Consumers prefer higher-scoring plans

Taking Stock: The Designer's Toolkit

- Plentiful design variation reveals that scores:
 - 1 Shift demand across products
 - 2 Affect firms' quality investments
- To extrapolate to new designs, we must recover the social cost and value of quality
 - > Costs: from variation in scoring incentives to invest
 - > Value: from variation in WTP for scores

1 Institutional Details and Data

2 Model, Identification, and Estimates

3 Scoring Design

Choose among MA plans – or – Medicare + Part D (prescription drug coverage)

- Heterogeneity in WTP for quality $(\gamma / \alpha_i) \Rightarrow$ scoring granularity
- ▶ Subjective Bayesian non-parametric priors ⇒ scoring cutoffs and weights

- Multiproduct oligopolistic price competition with risk adjustment
- Quality affects insurance cost:
 - > Better hospitals increase claim prices ($\uparrow C$), preventive care reduces hospitalization ($\downarrow C$)

- Choose investment for each product-category
- Rational expectations about rivals' investments based on market observables (Sweeting, 2009)
- ► Heterogenous convex investment costs ⇒ equilibrium quality effects

No optimality imposed on designer's experimentation

Supply model identified from profit optimality conditions

- Supply model identified from profit optimality conditions
- Revealed preferences identify consumers' WTP for scores
 - Cannot tell if WTP comes from beliefs about quality or preferences
 - > Example: only readmission risk quality (scalar)
 - Consumers WTP \$100 for plan to have 4 instead of 3 stars, all else equal
 - $\Delta \mathcal{E}(q) = 1\%$ and $\gamma = \$100$ or $\Delta \mathcal{E}(q) = 5\%$ and $\gamma = \$20$?

- Supply model identified from profit optimality conditions
- Revealed preferences identify consumers' WTP for scores
 - Cannot tell if WTP comes from beliefs about quality or preferences
 - > Example: only readmission risk quality (scalar)
 - Consumers WTP \$100 for plan to have 4 instead of 3 stars, all else equal
 - $\Delta \mathcal{E}(q) = 1\%$ and $\gamma = \$100$ or $\Delta \mathcal{E}(q) = 5\%$ and $\gamma = \$20$?
- Intuition: if consumers understand design, posterior beliefs are bounded
 - Bounds on beliefs + WTP ⇒ bounds on preferences
 - Consumers knows that $\psi(q) = 3 \iff q \in [0.8\%, 1\%)$ and $\psi(q) = 4 \iff q \in [0, 0.3\%)$
 - Therefore $\Delta \mathcal{E}(q) \in (0.5\%, 1\%) \implies \gamma \in (100, 200)$

- Supply model identified from profit optimality conditions
- Revealed preferences identify consumers' WTP for scores
 - Cannot tell if WTP comes from beliefs about quality or preferences
 - > Example: only readmission risk quality (scalar)
 - Consumers WTP \$100 for plan to have 4 instead of 3 stars, all else equal
 - $\Delta \mathcal{E}(q) = 1\%$ and $\gamma = \$100$ or $\Delta \mathcal{E}(q) = 5\%$ and $\gamma = \$20$?
- Intuition: if consumers understand design, posterior beliefs are bounded
 - > Bounds on beliefs + WTP \implies bounds on preferences
 - Consumers knows that $\psi(q) = 3 \iff q \in [0.8\%, 1\%)$ and $\psi(q) = 4 \iff q \in [0, 0.3\%)$
 - Therefore $\Delta \mathcal{E}(q) \in (0.5\%, 1\%) \implies \gamma \in (100, 200)$
 - \Rightarrow Variation in scoring design generates additional bounds and tightens identification

- Maximum Outcome quality \approx \$4,036 in OOP
- Incomplete info lowers surplus by \$199.3 (keeping supply fixed)
- Two sources of information asymmetry:

- ▶ Maximum Outcome quality \approx \$4,036 in OOP
- Incomplete info lowers surplus by \$199.3 (keeping supply fixed)
- Two sources of information asymmetry:
 - 1 Within-scores:

Best 4-star worth \$367.8 more than worst

- ▶ Maximum Outcome quality \approx \$4,036 in OOP
- Incomplete info lowers surplus by \$199.3 (keeping supply fixed)
- Two sources of information asymmetry:
 - 1 Within-scores:

Best 4-star worth \$367.8 more than worst

2 Across-scores:

22.7% of plans ranked opposite to preferences

- ▶ Maximum Outcome quality \approx \$4,036 in OOP
- Incomplete info lowers surplus by \$199.3 (keeping supply fixed)
- Two sources of information asymmetry:
 - 1 Within-scores:

Best 4-star worth \$367.8 more than worst

2 Across-scores:

22.7% of plans ranked opposite to preferences

 \Rightarrow 94.5% of losses come from across-score

Key Estimates - Quality provision

- Avg insurance markup of 10.5%
 - > For top insurers: avg marginal cost is \$758
 - Curto et. al (2019): medical cost is \$680
- Median investment = 12% of insurance profits
- Quality is underprovided:
 - 1 On average, $dTW/dq \in [17.6, 84.9]$ million/contract
 - 2 Less so in more competitive markets (Spencian)
 - 3 Less so in categories with ↑ weight (Design)

1 Institutional Details and Data

2 Model, Identification, and Estimates

3 Scoring Design

The Designer's Problem

$$\max_{\boldsymbol{\psi} \in \boldsymbol{\Psi}} \quad \mathbb{E}_{\boldsymbol{q}}[\underbrace{CS(\boldsymbol{\psi}, \boldsymbol{q})}_{\text{Consumer surplus}} + \underbrace{\sum_{f} V_{f}(\boldsymbol{\psi}, \boldsymbol{q}) - I(\boldsymbol{x}_{f}^{*}(\boldsymbol{\psi}), \mu_{f})}_{\text{Insurer profit}} | \boldsymbol{x}^{*}(\boldsymbol{\psi})$$

- Subject to equilibrium behavior:
 - > Firms update investments, prices, beliefs about rivals
 - Consumers update beliefs given design and realized scores
- Focus on deterministic, monotone, finite designs
 - > Includes MA, school letter grades, food labeling, ...

- 1 Exploring the space (Ψ) :
 - > **Challenge**: no optimality conditions to guide us (ψ is discontinuous)

- 1 Exploring the space (Ψ) :
 - > **Challenge**: no optimality conditions to guide us (ψ is discontinuous)
 - > Solution: divide into smaller, manageable problems
 - 1 $\psi = \mathsf{polynomial} \ \mathsf{aggregator} \circ \mathsf{cutoffs}$
 - 2 Choose number of cutoffs, polynomial order of aggregator
 - 3 Problem is now finitely parameterized: solve and iterate

- 1 Exploring the space (Ψ) :
 - **Challenge:** no optimality conditions to guide us (ψ is discontinuous)
 - > **Solution**: divide into smaller, manageable problems
 - 1 $\psi = \mathsf{polynomial} \ \mathsf{aggregator} \circ \mathsf{cutoffs}$
 - 2 Choose number of cutoffs, polynomial order of aggregator
 - 3 Problem is now finitely parameterized: solve and iterate
- 2 Evaluating the welfare value of $(TW(\psi))$:
 - **Challenge**: state-space for pricing subgame is huge: $[0, 1]^{|Q| \times |\mathcal{J}|}$
 - ψ induces a distribution over state-space, requires costly integration for every guess

- 1 Exploring the space (Ψ) :
 - **Challenge:** no optimality conditions to guide us (ψ is discontinuous)
 - > **Solution**: divide into smaller, manageable problems
 - 1 $\psi = polynomial aggregator \circ cutoffs$
 - 2 Choose number of cutoffs, polynomial order of aggregator
 - 3 Problem is now finitely parameterized: solve and iterate
- 2 Evaluating the welfare value of $(TW(\psi))$:
 - **Challenge**: state-space for pricing subgame is huge: $[0,1]^{|Q| \times |\mathcal{J}|}$
 - ψ induces a distribution over state-space, requires costly integration for every guess
 - > Solution: computation in Belief Space (Aumann and Maschler, 1995)
 - Drastically reduces dimensionality of state-space and integration costs
 - ⇒ Solve large grid of independent equilibria, identify value of each score as a distribution over grid

Solution: Best Linear Design

- 1 Pooling at the bottom: first score pools all low qualities
- 2 Aggregator: optimal weighting scheme aligned with preferences
- 3 Limited granularity: use only four scores; three partition higher quality

- Market power over quality (Spence, 1975; Crawford et al., 2019) : firms under-invest even under full info

- Market power over quality (Spence, 1975; Crawford et al., 2019) : firms under-invest even under full info

- Market power over quality (Spence, 1975; Crawford et al., 2019) : firms under-invest even under full info
- ► Delegation equivalence (Zapechelnyuk, 2020) : certification $\iff q^w$ or 0

- Market power over quality (Spence, 1975; Crawford et al., 2019) : firms under-invest even under full info
- ▶ Delegation equivalence (Zapechelnyuk, 2020) : certification $\iff q^w$ or 0
- Accounts for 71.8% of welfare gain (certification)
 - > 57% of contracts would receive <2 star in baseline, only 21% in equilibrium
 - > Serve only 1.9% of consumers
 - > Quality is 4% higher in equilibrium, investment nearly triples

New weights align with consumer preferences

New weights align with consumer preferences

New weights align with consumer preferences

Aggregation produces two problems:

1 Across-scores information asymmetry:

18 | 23

New weights align with consumer preferences

- 1 Across-scores information asymmetry:
 - > Eliminated by new weights

New weights align with consumer preferences

- 1 Across-scores information asymmetry:
 - > Eliminated by new weights
- 2 Multitasking moral hazard (Holmstrom and Milgrom, 1991)
 - Firms' allocations ignore preferences

New weights align with consumer preferences

- 1 Across-scores information asymmetry:
 - > Eliminated by new weights
- 2 Multitasking moral hazard (Holmstrom and Milgrom, 1991)
 - > Firms' allocations ignore preferences

New weights align with consumer preferences

- 1 Across-scores information asymmetry:
 - > Eliminated by new weights
- 2 Multitasking moral hazard (Holmstrom and Milgrom, 1991)
 - Firms' allocations ignore preferences

New weights align with consumer preferences

- 1 Across-scores information asymmetry:
 - > Eliminated by new weights
- 2 Multitasking moral hazard (Holmstrom and Milgrom, 1991)
 - Firms' allocations ignore preferences
- 3 Firm cost heterogeneity crucial for solution
 - > Otherwise, alignment leads to quality losses

New weights align with consumer preferences

Pooling at the bottom + optimal aggregator account for 98.2% of welfare gains

- > Pooling increases overall investment
- > Optimal aggregation improves informativeness and allocative efficiency of investments
- \Rightarrow High welfare value from optimal certification

Decomposing the Design: Granularity

Why only three scores at the top?

Decomposing the Design: Granularity

- Why only three scores at the top?
- Trade-off: efficiency vs. product variety
 - > More scores allow more investment actions for firms (delegation equivalence)
 - > More actions allow for more heterogeneity: lower quality at lower prices
 - > But also more deviations away from efficient production and towards profit maximization

Decomposing the Design: Granularity

- Why only three scores at the top?
- Trade-off: efficiency vs. product variety
 - More scores allow more investment actions for firms (delegation equivalence)
 - > More actions allow for more heterogeneity: lower quality at lower prices
 - > But also more deviations away from efficient production and towards profit maximization
- Granularity governed by:
 - 1 Value: consumers' heterogeneity in WTP for quality
 - 2 Cost: ability to generate separating choices for firms

- Holding prices and quality change information:
 - > Products are easier to choose, fewer mistakes
 - MA expansion: Consumers select quality that offsets systematic preferences

- Holding quality, change information, and prices:
 - > New information reveals vertical differentiation across products
 - > Firms exert market power over prices, capturing surplus

- Full equilibrium changes:
 - > Total welfare increases by \$155.7 per beneficiary/year, firms' benefit from coordination effect
 - Compensating variation of: quality = \$90.14 > \$70.45 = information
 - ⇒ Quality regulation is key driver of welfare gains

- Full information allows exercise of market power over quality, reduces welfare
- New scores dominate only because of equilibrium quality effects

Explaining the Differences in Designs

Why is CMS's design systematically different than the optimal?

- 1 Strong preferences for quality chronic care (Intermediate) and lower-cost hospitals (Outcome)
 - > Paternalism or dynamic considerations for future subsidized care
 - Nudging the market with scores is enormously costly:
 - \Rightarrow Outperformed by a subsidy that generated 8 cents of investments per dollar spent

Explaining the Differences in Designs

Why is CMS's design systematically different than the optimal?

- 1 Strong preferences for quality chronic care (Intermediate) and lower-cost hospitals (Outcome)
 - > Paternalism or dynamic considerations for future subsidized care
 - > Nudging the market with scores is enormously costly:
 - \Rightarrow Outperformed by a subsidy that generated 8 cents of investments per dollar spent
- 2 CMS might be risk averse to misrepresenting consumers' preferences
 - > CMS might also believe that consumers are naive (ignorant of policy changes)
 - > Medicare plays a delicate political and social role, objective might be $\max_{\psi \in \Psi} \min_{\gamma \in \Gamma} TW(\psi, \gamma)$
 - ⇒ CMS's design outperforms best (linear) monotone partitional design
 - > Assumptions of the setting are rejected by the data, yet presents credible rationale for status quo

Policy Implications Beyond MA

- 1 New methodology delivers aggregators that offset multitasking moral hazard
 - "Gaming" has been documented extensively in nursing homes, energy, schooling (Feng Lu, 2012; Clay et al., 2021; Neal and Schanzenbach, 2010)

Policy Implications Beyond MA

- 1 New methodology delivers aggregators that offset multitasking moral hazard
 - "Gaming" has been documented extensively in nursing homes, energy, schooling (Feng Lu, 2012; Clay et al., 2021; Neal and Schanzenbach, 2010)
- 2 Scores should be designed with quality goals in mind, not only informativeness
 - Quality promoting initiatives exist alongside scores in healthcare, schooling, electric appliances,...
 - > Properly designed scores can enhance these efforts; poorly designed ones, counteract

Policy Implications Beyond MA

- 1 New methodology delivers aggregators that offset multitasking moral hazard
 - "Gaming" has been documented extensively in nursing homes, energy, schooling (Feng Lu, 2012; Clay et al., 2021; Neal and Schanzenbach, 2010)
- 2 Scores should be designed with quality goals in mind, not only informativeness
 - Quality promoting initiatives exist alongside scores in healthcare, schooling, electric appliances,...
 - > Properly designed scores can enhance these efforts; poorly designed ones, counteract
- 3 Coarse, simple scores can improve welfare at small informational cost
 - > Longstanding concern about ability of consumers to process complex quality data
 - > Inherent value for simplicity in quality disclosure policies

- Scores are powerful quality regulation policies:
 - > Adapting MA's design to equilibrium effects increases welfare by \$8.8 billion
- Suggests potential for redesigning scores using theory and empirical work
 - > Challenges policy focus on granularity, (ex-ante) informativeness, cognitive bias considerations
 - \Rightarrow A simple, well-designed sticker can outperform full information outcomes
- Empirical Scoring Design methodology for disclosure policies
 - > Data-driven solution for an extensive policy problem

Thank You!

bvatter@mit.edu